Режим полимеризации на водяной бане

Для семинарского занятия №16.

1. Тема занятия:

Лабораторный этап замены воска на пластмассу. Виды гипсовок (прямой, обратный, комбинированный) восковых композиций в кювету. Подготовка пластмассового «теста», паковка. Методы полимеризации. Режим полимеризации «на водяной бане». Возможные ошибки, их проявления, профилактика. Отделка съемных протезов.

2. Цель занятия:

Ознакомить студентов с методами гипсовки восковой конструкции протеза в кювету. Приготовление и режим полимеризации пластмассы.

Студент должен знать:

1. Виды гипсовок (прямой, обратный, комбинированный) восковых композиций протеза в кювету.

2. Возможные ошибки, их проявления, профилактика.

Студент должен уметь:

1. Проводить подготовку пластмассового «теста», паковку. Методы полимеризации. Режим полимеризации на водяной бане.

2. Проводить окончательную моделировку воскового базиса протеза.

Студент должен ознакомиться:

1. С отделкой съемных протезов.

3. Структура практического пятичасового занятия (200 минут):

Этапы занятия Оборудование, учебные пособия Время (мин)
1. Организационный момент. Академический журнал 3 минуты
2. Проверка домашнего задания, опрос. Вопросник, учебные задачи, плакаты 40 минут
3. Объяснение учебного материала, демонстрация на пациенте. Плакаты, слайды, компьютерные демонстрации, истории болезни, пациенты. 40 минут
4. Самостоятельная работа студентов: обследование пациента с частичным отсутствием зубов, заполнение истории болезни. Пациент, истории болезни. 110 минут
5. Обобщение занятия. 5 минут
6. Задание на дом. 2 минут

4. Перечень вопросов для проверки исходного уровня знаний:

1. Искусственные зубы из пластмассы и фарфора.

2. Правила подбора и постановки искусственных зубов в частичных съемных протезах.

5. Перечень вопросов для проверки конечного уровня знаний:

1. Окончательная моделировка воскового базиса протеза.

2. Виды гипсовок (прямой, обратный, комбинированный) восковых композиций протеза в кювету.

3. Подготовка пластмассового «теста», паковка. Методы полимеризации. Режим полимеризации на водяной бане.

4. Возможные ошибки, их проявления, профилактика.

5. Отделка съемных протезов.

6. Краткое содержание занятия:

Окончательная моделировка воскового базиса протезазаключается в следующем.

1. Край искусственной десны приклеивают к модели расплавленным воском.

2. Восковую базисную пластинку, покрывающую небо, заменяют новой толщиной 1,5-2 мм для получения равномерной толщины пластмассы. Со стороны искусственной десны шейки зубов должны быть закрыты воском на 1 мм для укрепления их в базисе. Промежутки между искусственными зубами должны быть очищены от воска.

4. Необходимо тщательно очистить от воска наружную поверхность зубов и удалить воск с шеек зубов, иначе при полимеризации пластмассы базиса воск проникнет в пластмассу зубов и окрасит их в розовый цвет.

Для замены воска базисным материалом из гипса создают штамп и контрштамп. С этой целью модель с восковым базисом и искусственными зубами загипсовывают в разборную металлическую кювету. Все части кюветы снабжены приспособлениями (выступами, пазами), обеспечивающими точность их сборки. Различают три способа гипсовки: прямой, обратный, комбинированный.

При прямом способемодель с восковой конструкцией протеза загипсовывают в основание кюветы так, чтобы вестибулярная и окклюзионная поверхности зубов были покрыты гипсом, а воск, покрывающий небо и альвеолярный край десны с язычной стороны, остался свободным. После предварительного погружения в воду (на 10-15 мин) крышку кюветы с загипсованной конструкцией протеза заполняют гипсом и прессуют. После затвердевания гипса выплавляют воск и раскрывают обе половины кюветы. Искусственные зубы при прямом методе не переходят в другую половину, оставаясь в основании кюветы. Прямой метод применяется при починке протезов, при постановке зубов на приточке.

Материалы, применяемые для изготовления базисов протезов, получили название базисных пластмасс.

Требования к базисным материалам:

1) достаточная прочность и необходимая эластичность, обеспечивающие целостность протеза и отсутствие его деформации под воздействием жевательных сил;

2) достаточная твердость и низкая стираемость;

3) высокое сопротивление на удар;

4) небольшая удельная масса и малая термическая проводимость;

5) безвредность для тканей полости рта и организма в целом;

6) отсутствие адсорбирующей способности по отношению к пищевым веществам и микрофлоре полости рта.

Кроме того, базисные материалы должны отвечать следующим требованиям:

1) прочно соединяться с фарфором, металлом, пластмассой;

2) легко перерабатываться в изделие с высокой точностью и сохранять приданную форму;

3) окрашиваться и хорошо имитировать естественный цвет десны;

4) легко дезинфицироваться;

5) легко подвергаться починке;

6) не вызывать неприятных вкусовых ощущений и не иметь запаха.

Смоченный в стакане полимер перемешивают стеклянной или фарфоровой палочкой до равномерного увлажнения порошка. Полученную смесь оставляют в стакане, закрытом стеклянной пластинкой, для набухания на 15-20 мин в условиях комнатной температуры.

Созревание пластмассы считается законченным, когда полученная тестообразная масса тянется тонкими нитями.

Приготовленную пластмассу выбирают из стакана шпателем, разделяют на отдельные порции, укладывают в подготовленную кювету и прессуют. В процессе прессовки пластмасса формуется, заполняя все участки протезного базиса. После формовки и прессования пластмассу подвергают полимеризации.

Существуют три метода полимеризации пластмасс:

1) полимеризация на водяной бане;

2) способ литьевого прессования пластмассы;

Источник

ПОЛИМЕРИЗАЦИЯ БАЗИСНЫХ ПЛАСТМАСС В СВЧ-ПЕЧАХ

Традиционные методы полимериза­ции акриловых пластмасс на водяной ба­не, компрессионное и литьевое прессо­вание под давлением требуют строгого соблюдения режима, больших затрат времени, а полученная пластмасса обла­дает высоким содержанием остаточного мономера и низкими прочностными ха­рактеристиками. Исследованиями ряда отечественных ученых (Нападов М.А., Голубничий А.П., 1980; Рыбаков А.И., 1984) доказано, что качество пластмасс, приготовленных в сухой среде, намного выше, чем при их полимеризации на во­дяной бане. Улучшение физико-механи­ческих свойств акрилатов может быть до­стигнуто за счет инфракрасной, ультра­фиолетовой, гидропневматической и ультразвуковой обработки. В последние годы наиболее прогрессивным методом изготовления акрилатов и придания им лучших свойств является технология с использованием энергии сверхвысоких частот (СВЧ-полимеризация).

Энергия СВЧ быстро становится тем средством, которое позволяет создавать новые технологические методы и про­цессы. Основными технологическими процессами, основанными на энергии СВЧ, являются размораживание, сушка, нагрев и термообработка, термомехани­ческие воздействия, химические процес­сы (включая полимеризацию).

В отличие от традиционных способов, когда энергия передается нагреваемому объекту посредством лучеиспускания,

Глава 15. Основные конструкционные материалы

конвенции или теплопередачи, при СВЧ-нагреве происходит генерация теп­ла внутри самого обрабатываемого объ­екта. Проникновение СВЧ-поля внутрь вещества дает возможность обеспечить достаточно равномерный нагрев по все­му объему тела, избежав градиента (пере­пада) температур.

В связи с тем, что воздействие СВЧ-поля приводит к достаточно равномер­ному выделению тепла именно в обраба­тываемом объекте, на его нагрев затрачи­вается, по сравнению с традиционными способами, значительно меньше време­ни. В ряде случаев технологический про­цесс может быть ускорен в десятки раз. Время нагрева определяется объемом те­ла, но практически не зависит от его формы.

Энергия СВЧ — это очень удобный ис­точник тепла, который в ряде случаев об­ладает несомненными преимуществами перед другими источниками. Такой ис­точник не вносит каких-либо загрязне­ний при нагреве, отличается гибкостью в применении и управлении. Распро­странение энергии СВЧ происходит со скоростью света. Генераторное оборудо­вание является полностью электронным и работает практически безинерционно. Благодаря этому количество энергии СВЧ и момент ее приложения можно из­менять мгновенно.

Использование энергии СВЧ впервые упоминается в публикации японских ученых M.Nishii и H.Hashimoto (1968). Дальнейшее развитие темы нашло отра­жение в работе H.Kimura и N.Teraoka (1984), которая посвящена созданию специальных кювет и стоматологических материалов, процессу формования и по­лимеризации акриловых смол с исполь­зованием микроволн. В результате этих исследований фирмой «G-C Interna­tional» (Япония) был разработан метод, который позволяет сократить время по­лимеризации материала базиса до 3 мин.

При этом использовались специальный материал Acron MC и радиопрозрачная кювета из стеклопластика, а процесс по­лимеризации осуществлялся в бытовой микроволновой печи.

По имеющимся зарубежным публика­циям, можно считать доказанным, что микроволновая технология является не только приемлемой, но также имеет ряд преимуществ по сравнению с традици­онными способами полимеризации пластмасс, что объясняется действием СВЧ-поля на вещество. Электромагнит­ное поле, проникая в мономер, взаимо­действует с заряженными частицами, вы­зывая их колебания и изменяя при часто­те излучения 2450 МГц направленность их ориентации приблизительно 5 млрд раз в секунду. Вследствие этого они пере­мещаются внутрь сети молекул, и это движение под воздействием микровол­нового излучения служит причиной вну­треннего нагрева. Процесс происходит сразу и равномерно во всем объеме поли-меризуемой массы, причем за короткий промежуток времени — 3—7 мин. Кроме того, происходит более полная связь мо­лекул полимера и мономера, что позво­ляет получить пластмассу с лучшими фи­зико-механическими характеристиками.

В течение 1992—1997 гг. специалиста­
ми МГМСУ (Б.П.Марков, А.И.Дойни-
ков, Е.Г.Пан, О.Б.Новикова) в содружес­
тве с сотрудниками Центрального НИИ
стоматологии (И.Ю.Поюровская,

Т.Ф.Сутягина), ГосЦНИРТИ (Б.Д.Рыба­ков) и НТЦ «Альфа-1» (С.В.Корнеев, ГФДуржинская) проводились разработ­ка метода и исследования полимериза­ции базисов съемных зубных протезов при помощи микроволновой энергии. Основной задачей этих работ являлось обеспечение изготовления базисов про­тезов из отечественных обычных двух-компонентных полимер-мономерных пластмасс (Этакрил-02, АКР-15, бес­цветная, Фторакс), которые по качеству

Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов

не уступали бы таковым, изготовленным на водяной бане.

В процессе исследований было дока­зано, что при сокращении времени поли­меризации материала в гипсе ни тепло­вой, ни микроволновый методы нагрева по отдельности не способны обеспечить однородность нагрева всего объема кю­веты. Лишь комбинация теплового и ми­кроволнового нагрева способна обеспе­чить разницу температур в центральной части и на периферии кюветы в единицы градусов. Для этого кювета изготавлива­ется из диэлектрика с потерями, т.е. ста­новится полупрозрачной для электрома­гнитных волн. При этом часть энергии микроволн, которая проникает внутрь кюветы, обеспечивает микроволновый нагрев гипса с полимеризуемым матери­алом. Другая часть микроволновой энер­гии поглощается материалом кюветы, нагревает ее, в связи с чем обеспечивает обычный тепловой нагрев гипса с мате­риалом. Такое комбинированное воздей­ствие позволяет обеспечить равномер­ный нагрев материала с гипсом в кювете по всему ее объему.

Оборудование для осуществления по­лимеризации в электромагнитном поле СВЧ представлено специальными кюве­тами из диэлектрика АГ-4 и программи­рованной микроволновой установкой «Дента» (рис. 15.1). По конструкции кю-

веты аналогичны известным металличе­ским и состоят из двух колец, основания и крышки, плотно подходящих друг дру­гу. Части кюветы скрепляются болтами. Материал кювет механически прочен и выдерживает необходимый режим прессования.

Установка «Дента» снабжена микро­волновым генератором мощностью 800 Вт, рабочей частотой 2450 МГц и укомплектована стеклянным поддо­ном, на котором устанавливается кювета. Специальное кольцо обеспечивает вра­щение стеклянного поддона для дости­жения так называемого перемешивания поля внутри камеры микроволновой пе­чи и, следовательно, более равномерного нагрева. Технологические режимы, о ко­торых будет сказано ниже, устанавлива­ются нажатием фиксированных кнопок на панели управления.

Клинические и лабораторные этапы до момента выплавления воска из кюве­ты и после извлечения готового протеза не отличаются от общепринятых. После гипсовки и полного затвердевания гипса кювета помещается в печь на вращаю­щийся столик. Запускается режим раз­мягчения воска (1 мин при 100% мощно­сти поля СВЧ). При этом воск не дово­дится до полного расплавления во избе­жание впитывания его в гипс и деформа­ции поверхности модели, а размягчается

Рис. 15.1. Диэлектрическая кювета в микроволновой установке «Дента».

Глава 15. Основные конструкционные материалы

и легко удаляется. Остатки вымываются кипящей водой.

Следующий технологический режим — сушка гипсовой формы (5 мин при 50°С) — связан с тем, что на равномерный нагрев кюветы в поле СВЧ влияет водо-насыщенность гипса. Избыточное содер­жание воды может вызвать чрезмерно быстрый нагрев гипсовой формы, что снижает качество полимсризуемой плас­тмассы.

После паковки пластмассового теста в кювету, прессования, скрепления час­тей кюветы и ее установки в печи СВЧ нажатием соответствующих кнопок на панели управления устанавливается ре­жим полимеризации, состоящий из не­скольких циклов: нагрев—пауза—допол­нительный нагрев. Различные уровни подачи энергии и ее импульсность (пре­рывистость) позволяют компенсировать изменения диэлектрических свойств об­рабатываемого материала во время обра­ботки и выровнять температуру по объ­ему в паузах между импульсами.

Процесс соединения полимера и моно­мера является сложной экзотермической реакцией. Нагрев кюветы до 65°С на водя­ной бане сопровождается выделением тепла, и при дальнейшем нагреве до

75—80°С происходит температурный ска­чок до I Ю°С. Результатом этого является перегрев пластмассы, что увеличивает воз­можность образования газовой пористос­ти и ухудшает качество зубных протезов.

При достижении критической темпе­ратуры 65°С пауза в СВЧ-нагреве сгла­живает температурный скачок, который проходит в этот период в пределах Ю()°С. Цикл дополнительного нагрева по СВЧ-методике обеспечивает окончательную полимеризацию при температуре близ­кой к Ю0°С, но уже в стабильных услови­ях, когда критический пик температуры прошел.

Сравнительная оценка физико-механи­ческих характеристик и содержания оста­точного мономера в образцах пластмасс (табл. 15.1), полимеризованных в поле СВЧ и на водяной бане, показала преиму­щество микроволновой технологии (Мар­ков Б.П., Пан Е.Г., Маркова Г.Б. и др., 1998; Мальгинов Н.Н., 2000; Марков Б.П., Пан Е.Г., Маркова Г.Б., Зоткина М.А., 2001).

Установлена существенная зависи­мость санитарно-химических свойств пластмасс от методики полимеризации (Мальгинов Н.Н., 2000). Так, при СВЧ-полимеризации новой базисной пласт-

Сравнительная оценка физико-механических характеристик и содержания остаточного мономера в образцах пластмасс

Свойства Водяная баня СВЧ-полимеризация Статистически значимая разница, %
Ударная вязкость (кДж/м 2 ) по Динстату 3,9±0,6 4,2±0,57 X
Прочность при трехточечном изгибе (МН/м 2 ) 79+2,5 105+5
Прочность при изгибе (МН/м 2 ) 100,7+8,4 167+350
Содержание остаточного мономера(%) 0,47 0,24

Раздел II. Материалы, применяемые для изготовления пластиночных протезов при полной утрате зубов

массы «Стом-Акрил» содержание в вы­тяжках основного составляющего поли­мерной композиции — метилметакрилата — на всех сроках наблюдения находится на уровне 0,046—0,080 мг/л, что в 10 раз мень­ше по сравнению с технологией полиме­ризации на водяной бане. Только в случае СВЧ-полимеризации концентрация ме­тилметакрилата на всех сроках наблюде­ния в 3—5 раз ниже безопасного уровня (0,25 мг/л). Также надо отметить, что сте­пень прилегания СВЧ-полимеризованно-го базиса к протезному ложу выше, чем у полученного обычным нагреванием на водяной бане (Kimura H., Teraoka N., 1983), за счет уменьшения погрешностей линейных размеров (Takamata Т., 1989).

Подводя итог, следует отметить, что технология изготовления съемных про­тезов с использованием энергии СВЧ по­зволяет улучшить качество зубных про­тезов и, соответственно, ортопедическо­го лечения, облегчить труд зубного тех­ника и повысить культуру труда.

Дата добавления: 2015-12-29 ; просмотров: 4126 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Режим бани финская это как
  • Реечный пол для бани
  • Редкие камни для бани
  • Регуляторы температуры для бани
  • Регулятор температуры для водяной бани