Применение высокопрочных сталей в строительстве

Основные виды и марки сталей, применяемых в строительстве

В строительстве в основном применяют углеродистые стали обыкновенного качества, качественные конструкционные углеродистые стали и низколегированные конструкционные стали.

Углеродистые стали обыкновенного качества содержат углерод в количестве 0,06 – 0,62 %, а также примеси кремния и марганца в нормальных концентрациях. При обозначении марок стали могут быть указаны: группы поставки (А – по механическим свойствам, Б – химическому составу,
В – механическим свойствам с дополнительными требованиями по химическому составу); метод производства (М – мартеновский, Б – бессемеровский, К – кислородно-конверторный); дополнительные индексы (сп – спокойная сталь, пс – полуспокойная сталь, кп – кипящая сталь). В группе А обозначение способа производства часто опускается, однако имеется в виду сталь мартеновская, а при отсутствии дополнительного индекса подразумевается сталь спокойная.

Углеродистую сталь обыкновенного качества группы А изготавливают марок: Ст 0, Ст 1, Ст 2, Ст 3, Ст 4, Ст 5, Ст 6, Ст 7; сталь группы Б – тех же марок, что и сталь группы А, но перед маркой стали ставят букву Б (например, Б Ст 0, Б Ст 1 кп); сталь группы В – В Ст 2, В Ст 3, В Ст 4 и В Ст 5. По мере увеличения номера повышаются содержание углерода в стали, ее прочность и твердость, но снижаются пластичность и ударная вязкость.

Качественная конструкционная углеродистая сталь поставляется по химическому составу и механическим свойствам и выплавляется в мартенах и кислородных конверторах. Установлены марки этой стали: 05 кп, 08 кп, 08 пс, 10 кп, 10 пс, 15 кп, 15 пс, 15, 20 кп, 20 пс, 20, 25, 30, 35, 40, 45, 50, 55, 58, 60. Две цифры в марках показывают среднее содержание углерода в сотых долях процента.

В маркировке легированной сталиуказывают названия легирующих добавок и их содержание. Приняты буквенные обозначения легирующих элементов: С – кремний (при концентрации выше нормальной), Г – марганец (концентрации выше нормальной), Х – хром, Н – никель, М – молибден, В – вольфрам, Т – титан и др. Первые две цифры марки указывают среднее содержание углерода в сотых долях процента. Одна цифра в начале марки обозначает среднее содержание углерода в десятых долях процента. Если в начале марки нет цифры, то количество углерода составляет 1 % и выше. Цифры, следующие за буквами, показывают среднее содержание данного элемента в процентах; если за буквой отсутствует цифра, то содержание данного элемента около 1 %. Буква А в конце марки обозначает высококачественную сталь, содержащую меньше серы и фосфора. Например, 35 Х Н 3 М А – это легированная сталь, высококачественная, с содержанием углерода 0,35 %, хрома и молибдена – около 1 %, никеля – 3 %; Г 13 – это легированная сталь с содержанием углерода 1 % и выше, марганца – 13 %.

Низкоуглеродистые и низколегированные стали широко применяют для изготовления металлических конструкций мостов, опор, транспортных галерей, элементов каркаса зданий и сооружений, армирования железобетонных конструкций и др. Элементы металлических конструкций получают в горячем или холодном состоянии различными способами: прокатом, ковкой, волочением, штамповкой, прессованием (металлических порошков). После этого часто производят термическую или механическую обработку стали с целью ее упрочнения.

К термической обработке стали относят: а) закалку, б) отпуск, в) отжиг, г) нормализацию, д) обработку холодом, е) химико-термическую обработку (цементацию, азотирование, хромирование). Для низкоуглеродистых сталей термическая обработка повышает предел прочности на 20- 25 %, что снижает расход стали на 13-18 %. Экономическую эффективность металлических конструкций повышают, применяя высокопрочные стали (600-1000 МПа). Для этого их легируют карбидообразующими элементами (например, хромом, молибденом, вольфрамом, ниобием).

Соединение элементов в конструкцию производят с помощью сварки, клепки, болтов. Сваркой называют процесс получения неразъемных соединений металлических изделий с применением местного нагрева. По виду энергии различают сварку химическую (газовую, термитную) и электрическую (дуговую, контактную); по состоянию металла в зоне сварки – пластическую (нагрев металла до пластического состояния) и сварку плавлением; по способу подачи металла и осуществления сварки – ручную, полуавтоматическую и автоматическую. В строительстве наиболее распространены электродуговая сварка плавлением и электроконтактная сварка в пластическом состоянии (стыковая, точечная, шовная или роликовая). Газовая сварка применяется для соединения элементов из чугуна, цветных металлов, строительных деталей малой толщины.

Источник

Качественные высокопрочные стали: конструкционная и инструментальная

На правах рекламы

Они содержат углерод и дополнительные элементы, состав и соотношение которых зависят от заданных свойств.

Качество материала определяется возможностями обработки, стойкостью к разным видам нагрузок. Невысокий процент углерода обеспечивает хорошую пластичность при низкой прочности. Увеличение его доли делает сталь более прочной, но менее пластичной. В общем случае различают сплавы:

Низкоуглеродистые (менее 0,3%). Подходят для конструкций, которые эксплуатируются без высоких нагрузок.

Среднеуглеродистые (от 0,3 до 0,6%). Применяются для изготовления обширной номенклатуры металлопродукции.

Высокоуглеродистые (свыше 0,6%). Из них создаются инструменты повышенной прочности, износостойкости.

Углеродистые стали могут включать полезные и вредные примеси. К нежелательным добавкам относятся фосфор и сера, которые приводят к появлению трещин при механических нагрузках, низких и высоких температурах. В металлопродукции хорошего качества их суммарное содержание не должно превышать 0,03%.

Чтобы изготовить стальной сплав с особо ценными свойствами проводят легирование. Самые распространенные добавки: хром, кремний, никель, марганец, молибден.

Конструкционные стали

Из конструкционных сталей создаются строительные элементы, разнообразные изделия, используемые в промышленном машиностроении. Так как категория материалов достаточно обширная, в ней выделены основные группы сплавов, объединенные по составу и свойствам.

Стали для строительных работ. Среднеуглеродистые (в том числе, низколегированные), с хорошей свариваемостью, предназначенные для возведения многоуровневых, разветвленных сооружений с равномерно распределенной нагрузкой.

Нержавеющие (коррозионностойкие). Низкоуглеродистые, улучшенные хромом и марганцем, хорошо защищенные от разрушающего воздействия воды, растворов кислот, щелочей:

Пружинно-рессорные. Легированные сплавы, слабо чувствительные к упругим деформациям. Широко используются в амортизирующих механизмах.

Стали для автоматического производства. Низкопластичные материалы с добавлениями серы, свинца, селена, при автоматизированной обработке которых образуется мелкая, легко ломающаяся стружка. Предназначены для массовой станочной обработки.

Сплавы холодного штампования. Высокопластичные, не подверженные разрывам материалы, которые могут существенно менять форму без ухудшения параметров качества.

Стойкие к износу. Металлопродукция с высоким процентом марганца, из которой изготавливаются трущиеся детали, подверженные значительным статическим, динамическим нагрузкам.

Сплавы усиленной прочности. Высоколегированные среднеуглеродистые составы со специальными свойствами, разработанные для наиболее ответственных узлов механизмов и конструкций.

Усовершенствованные стали. Среднеуглеродистые, обогащенные марганцем, бором, никелем или молибденом, прошедшие термообработку для улучшения характеристик.

Для изготовления подшипников. Износостойкие, плотные без посторонних включений, пор, имеющие увеличенный ресурс эксплуатации.

Цементируемые материалы. Низкоуглеродистые, износостойкие, используемые для производства конструктивных узлов и отдельных деталей, подверженных трению, импульсным нагрузкам.

Стоимость металлопродукции из конструкционных сталей зависит от состава, габаритов. Актуальные цены изделий идентичных размеров и разных марок приведены на примере каталога крупнейшего российского металлмаркета «Металлсервис».

Круг горячекатаный конструкционный:

Круг горячекатаный никелевый:

Шестигранник горячекатаный конструкционный:

Инструментальные стали

Эта категория включает сплавы, в которых содержание углерода превышает отметку в 0,7%. В основном, это металлопродукция, предназначенная для изготовления измерительных приборов, различного режущего инструмента, штампов холодного и горячего деформирования, пресс-форм для литья, работающих под давлением, ряда других высокоточных изделий.

Из-за особенностей области применения к инструментальным сталям предъявляются строгие требования. В частности, материал должен хорошо резаться и шлифоваться, иметь высокую стойкость к критичным температурам, обезуглероживанию, образованию трещин. Рассмотрим основные типы инструментальных сталей по назначению.

Для режущих инструментов, способные при длительных нагрузках сохранять основные характеристики (твердость, прочность, термостойкость).

Для измерительных инструментов, легко обрабатываемые, износостойкие, поддерживающие стабильность формы и размеров при использовании, длительном хранении.

Сплавы для штампования повышенной твердости, износостойкости, прокаливаемости. Различают легированные сплавы холодной, горячей штамповки. В первом случае, к базовым свойствам добавляются термостойкость и вязкость, во втором – увеличенная прочность и теплопроводность.

Валковые стали глубокой прокаливаемости, высокой износостойкости, контактной прочности, минимально деформируемые.

Как и в случае конструкционной металлопродукции, цены на изделия из инструментальной стали зависят от выбранной марки.

Источник

ПРИМЕНЕНИЕ ВЫСОКОПРОЧНЫХ СТАЛЕЙ В СТРОИТЕЛЬСТВЕ ТЕПЛОВЫХ ЭЛЕСТРОСТАНЦИЙ

Статья опубликована в сборнике журнале «Градостроительство»

Шашков А.А.; Шистеров А.П.; Парлашкевич В.С., канд. техн. наук, проф. каферы металлических конструкций МГСУ.

ПРИМЕНЕНИЕ ВЫСОКОПРОЧНЫХ СТАЛЕЙ В СТРОИТЕЛЬСТВЕ ТЕПЛОВЫХ ЭЛЕСТРОСТАНЦИЙ

В ближайшем будущем предполагается массовое строительство пылеугольных электростанций, как в России, так и за рубежом. В настоящее время возрастает стоимость природного газа и это делает строительство парогазовых электростанций нерентабельным особенно в тех регионах, где поблизости могут находиться места добычи угля. В этих регионах наиболее выгодным оказывается строительство пылеугольных электростанций, причем наиболее выгодным является строительство блоков большой мощности: с турбоагрегатами 800 и 1200 МВт. При строительстве энергоблоков большой мощности сокращается удельная стоимость строительно-монтажных работ на киловатт установленной мощности [4]. В таких энергоблоках возможны два вида расположения турбоагрегата: – продольное и поперечное (рис.1). Наиболее выгодным является поперечное расположение (рис.1, б) которое обеспечивает меньшую протяженность трубопроводов острого пара, более высокий коэффициент полезного действия энергоблока и меньшее количество ограждающих конструкций и незанятых площадей главного корпуса[3].

Рис.1. Схемы расположения турбоагрегатов:

а – продольное расположение турбоагрегата; б – поперечное расположение турбоагрегата

Такая схема реализована в девятом энергоблоке Костромской ГРЭС [5] с использованием турбоагрегатов 1200 МВт. При поперечном расположении турбоагрегатов пролет фермы машинного зала должен быть 84 м. Ферма с таким пролетом с применением сталей обычной и повышенной прочности получается тяжелой и кроме того мостовых кранов грузоподъемностью 125/20 т и пролетом более 80 м нет. На Костромской ГРЭС машинный зал главного корпуса запроектирован двухпролетным с использованием подстропильных ферм в среднем ряду колонн (рис.2, а). Пролет подстропильной фермы по оси А1 составляет 48 м. Недостатками данного решения являются высокая металлоемкость подстропильной фермы и разделение объема машинного зала на два участка (пролета). Это затрудняет обслуживание технологического оборудования.

В целях снижения металлоемкости было решено изменить компоновку энергоблока [3]. В частности, был произведен отказ от мостовых кранов грузоподъемностью 125/20 т, необходимых только для монтажа статора генератора. В новой компоновке предусматриваются размещение козлового крана вдоль оси турбоагрегата и 2 многопролетных подвесных крана фирмы Demag (рис 3). Монтаж статора генератора предполагается осуществлять по зарубежной технологи с применением транспортной эстакады со стороны торца турбинного отделения по технологии фирм Mammoet и Titan (рис. 4).

Рис. 2. Схема поперечного сечения машинного зала:

а – при двухпролетном решении; б – при однопролетном решении (пролет фермы 84 м);

Рис. 3. Многопролетный подвесной кран;

Рис. 4. Монтаж статора генератора с помощью транспортной эстакады;

Для решения нового варианта компоновки была запроектирована ферма пролетом 84 м.

Сталей высокой прочности целесообразно применять в центрально растянутых и центрально сжатых элементах. Сечения верхних и нижних поясов ферм были приняты из прокатного двутавра 30К3. Для решетки использовались сечения из двух швеллеров, соединенных планками. Соединения элементов решено было выполнить на фасонках. Возможно соединение в сварном и болтовом исполнении. При выполнении сварного соединения должны применяться сварочные материалы и сварочные технологии, предназначенные для сварки высокопрочных сталей.

Для удобства транспортировки предусмотрена разбивка фермы на 8 отправочных марок и 7 дополнительных элементов.

Рис. 5. Эпюры усилий в стержнях фермы;

По результатам расчетов были определена эффективность в снижении металлоемкости и стоимости фермы пролетом 84 м при переходе на высокопрочные стали. Снижение металлоемкости фермы составило 40% и экономическая эффективность в пересчете на современные расценки – в 33%. [7]

Это показывает актуальность применения высокопрочных сталей в энергетическом строительстве ближайшего будущего при создании полиблоков большой мощности и строительстве других большепролетных объектов.

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Применение высокопрочных болтов в строительстве
  • Применение высокопрочных бетонов в строительстве
  • Применение вспененного пвх в строительстве
  • Применение воска в строительстве
  • Применение ворота в строительстве