Применение в строительстве законов физики

Статья «Физика в профессии Профессиональное обучение по отрасли строительство»»

Физика в профессии строителя.

Я уверена, что у каждого из нас имеется дом. Будь то частный дом, либо квартира. В разное время года свой дом защищает нас от разных климатических воздействий: жары, дождей, холода и т.д. Многие считают это чем-то обыденным и само собой разумеющимся свойством дома или квартиры, но далеко не многие задумываются или интересуются как же строители, каким способом они создают такой комфорт?!

Методы строительной физики основаны на анализе физических процессов, происходящих в ограждениях и в окружающей их среде. Для них используют лабораторные и натурные исследования этих процессов с использованием математических методов физического моделирования.

На каждое строительное сооружение действуют многочисленные силы, например, силы сжатия и растяжения. Эти силы нагружают строительное сооружение. Поэтому их называют нагрузками. Нагрузки происходят за счет самого сооружения и могут быть обусловлены внешними воздействиями. Различают постоянные и временные нагрузки.

На основе полученных знаний по физике, на уроках профессионального обучения мы изготавляем макеты зданий, которые соответствуют современным стандартам и качеству.

Наружные ограждающие конструкции зданий должны удовлетворять следующим теплотехническим требованиям: обладать достаточными теплозащитными свойствами, чтобы не допускать излишних потерь тепла в холодное время года и перегрева помещений летом в условиях жаркого климата; температура внутренней поверхности ограждения не должна опускаться ниже определенного уровня, чтобы исключить конденсацию пара на ней и одностороннее охлаждение тела человека от излучения тепла на эту поверхность; обладать воздухопроницаемостью, не превосходящей допускаемого предела, выше которого чрезмерный воздухообмен снижает теплозащитные свойства ограждений, приводит к дискомфорту помещений и излишнимтеплопотерям; сохранять нормальный влажностный режим в процессе эксплуатации здания, что особенно важно, поскольку увлажнение ограждения снижает его теплозащитные свойства и долговечность.

Кроме того, доступность материала выгодно влияет на стоимость строительства. При соблюдении технологий и высоком качестве работ, срок эксплуатации дома очень велик. Процесс строительства не требует излишних трудозатрат. А тем более многие строительные приборы можно изготовить «своими руками». Например, опираясь на понятия давления, силы и электризации при распыления частиц, для покраски стен дома мною был изготовлен краскопульт. Краскопульт представляет собой уникальный инструмент, основной функцией которого является нанесение на поверхность различных лакокрасочных, водно-известковых и водно-меловых составов.

Экологический дом – это качественное, долговечное, доступное индивидуальное жильё. Использование натуральных, природных материалов позволяет создать благоприятный для здоровья микроклимат дома.

Источник

Физика в строительстве

Автор работы: Пользователь скрыл имя, 07 Июня 2012 в 13:26, доклад

Краткое описание

Физические процессы, проистекающие в природе, означают изменение формы тела, его положения или агрегатного состояния.
Строительные работы проводятся в физическом разрезе так, что все изменения физического состояния тел можно проследить и измерить. Изменения массы, длины и ширины, времени и температуры тел измеряются и документируются. Также и запланированные изменения физического состояния материалов принимаются в расчет с тем, чтобы по окончанию строительных работ выйти на нужные показатели.

Содержание

1. Физические основы строительства.
2. Физические основы вентиляции.
3. Геодезическое оборудование, созданное на основании законов оптики, применяемое в строительстве.
3.1 Тахеометр и его устройство.
3.2 Нивелир и его устройство.
3.3 Теодолит и его устройство.
4 Голография и топографическая интерферометрия в строительстве.
4.1 Физические принципы голографии.
Заключение.
Список литературы.

Вложенные файлы: 1 файл

ФИЗИКА В СТРОИТЕЛЬСТВЕ.docx

1. Физические основы строительства.

2. Физические основы вентиляции.

3. Геодезическое оборудование, созданное на основании законов оптики, применяемое в строительстве.

3.1 Тахеометр и его устройство.

3.2 Нивелир и его устройство.

3.3 Теодолит и его устройство.

4 Голография и топографическая интерферометрия в строительстве.

4.1 Физические принципы голографии.

1. Физические основы строительства.

Физические процессы, проистекающие в природе, означают изменение формы тела, его положения или агрегатного состояния.

Строительные работы проводятся в физическом разрезе так, что все изменения физического состояния тел можно проследить и измерить. Изменения массы, длины и ширины, времени и температуры тел измеряются и документируются. Также и запланированные изменения физического состояния материалов принимаются в расчет с тем, чтобы по окончанию строительных работ выйти на нужные показатели.

Изменение формы предметов, например, изгиб арматуры, выполняется при помощи машин и механизмов. Изменение положение происходит, например, при возведении стен, когда готовые стеновые блоки и панели устанавливаются при помощи подъемного устройства.

Изменение состояния вещества можно наблюдать на примере увлажнения бетона, когда при увлажнении бетона после укладки вода, которая разбрызгивается по его поверхности, испаряется или впитывается.

2. Физические основы вентиляции.

Известно, что нагретый воздух имеет меньший удельный вес чем холодный (рис.1), и поэтому вытесняется более тяжелым холодным воздухом и поднимается вверх. Это свойство нагретого воздуха используется не только для подъема монгольфьеров – летательных аппаратов легче воздуха, но и для создания тяги в отопительных устройствах. И, что более важно для нас, для охлаждения узлов РЭА, когда естественная тяга является основной в корпусах с естественной вентиляцией.

В корпусах с принудительной вентиляцией эта тяга может как улучшать характеристики системы вентиляции, так и ухудшать их при неправильном размещении вентилирующих устройств.

График зависимости уд. веса воздуха от температуры показан на рис.1.

Отвод тепла из корпусов РЭА осуществляется воздухом, за счет выноса проходящим потоком избыточного тепла и замещения его в корпусе более холодным внешним воздухом. Это замещение создает проходящий поток воздуха. Он возникает по естественным причинам – разности температур или соответственно разности удельных весов наружного и внутреннего воздуха. Это естественная вентиляция.

При значительных избытках тепла, низкой температуре наружного воздуха в корпусах РЭА без принудительной вентиляции могут осуществляться воздухообмены, достигающие нескольких десятков кубических метров в час.

Воздушные потоки, обеспечивающие теплообмен могут создаваться и существовать за счет внешнего нагнетающего (вытягивающего) электромеханического устройства – вентилятора. Этот вид вентиляции требует дополнительных энергозатрат, повышает уровень шума блоков и снижает надежность конструкции РЭА.

Конструкция корпуса выбирается исходя из возможности применения того или иного вида его вентиляции.

Например, в низко профильных корпусах отсутствует перепада высоты между центрами вентиляционных отверстий, это делает невозможным применение естественной вентиляции. В таких корпусах возможно применение только принудительной вентиляции.

Из курса физики известно, для изобарного (при постоянном давлении) процесса нагрева газа массой m, количество теплоты, полученное им – W увеличивает его температуру на Δt.

W = m•c•Δt = Lпр•ρ•с•Δt (Дж/час)

ρ-удельный вес воздуха.

Когда вентиляция предназначена для удаления тепла из вентилируемого объема, объем приточного воздуха и количество отводимого тепла определяется из выражения:

где: W – отводимые избытки тепла Дж/час,

tух – температура воздуха уходящего из вентилируемого объема,

tпр –температура приточного воздуха,

ρпр – удельный вес приточного воздуха в кг/м3,

С – теплоемкость воздуха в Дж/кг град,

Lпр – объем приточного воздуха м3/час.

где: W – отводимые избытки тепла Вт,

tух – температура воздуха уходящего из вентилируемого объема,

tпр –температура приточного воздуха,

ρпр – удельный вес приточного воздуха в кг/м3,

С – теплоемкость воздуха в Дж/кг град,

Lпр – объем приточного воздуха м3/сек.

3. Геодезическое оборудование, созданное на основании

законов оптики, применяемое в строительстве.

Геодезия – одна из древнейших прикладных наук, история цивилизации неразрывно связана с геодезией. Путешественникам были необходимы карты, подробные топографические планы и приборы навигации для определения собственного положения (координат). Важной частью кадастровых работ является определение координат границ землевладений. А для военного дела всегда нужны были подробные, точные и достоверные карты. Геодезические работы невозможны без качественного геодезического оборудования (электронные тахеометры, спутниковые приемники, нивелиры, лазерные дальномеры и т.д.) и программного обеспечения.

В строительстве с помощью геодезических инструментов, решают задачи связанные с составлением топографических планов местности, составлением генерального плана участка застройки. Также геодезическое оборудование основанное преимущественно на законах оптики необходимо при строительстве промышленных и гражданских объектов, так как с помощью них решаются вопросы вертикальности зданий, определяются проектные значения высот и положения основных осей, что позволяет исключить большую погрешность строительства, связанную с несовершенством строительных процессов.

3.1 Тахеометр и его устройство.

Тахеометр — геодезический прибор для измерения расстояний, горизонтальных и вертикальных углов. Используется для вычисления координат и высот точек местности при топографической съёмке местности, при разбивочных работах, переносе на местность высот и координат проектных точек.

Тахеометр ТП: 1 — цилиндрический уровень; 2 — окуляры зрительной трубы и микроскопа; 3 и 4 — закрепительный и наводящий винты вертикального круга; 5 и 6 — то же горизонтального круга.

Тахеометры, в которых все устройства (угломерные, дальномерные, зрительная труба, клавиатура, процессор) объединены в один механизм, называют интегрированными тахеометрами.

Тахеометры, которые состоят из отдельно сконструированного теодолита (электронного или оптического) и светодальномера, называют модульными тахеометрами.

3.2 Нивелир и его устройство.

Нивелир (от франц. niveler — выравнивать, niveau — уровень), геодезический инструмент для измерения превышения точек земной поверхности — нивелирования, а также для задания горизонтальных направлений при монтажных и т.п. работах. Наибольшее распространение имеют оптико-механические нивелиры, снабженные зрительной трубой, при помощи которой производят отсчёт по рейке. Перед отсчётом визирную линию зрительной трубы устанавливают горизонтально при помощи уровня; в Нивелир с самоустанавливающейся линией визирования это осуществляется автоматически.

Всю конструкцию нивелира, можно разбить на три основных блока (рис. 1): наведения, ориентирования и измерения.

рис.1 Структурная схема нивелира

Назначение устройства наведения заключается в обеспечении наведения визирной оси зрительной трубы по отношению к объекту наблюдений (рейке).

По сравнению с теодолитом точность наведения на рейку не играет существенной роли, так как отсчет по горизонтальной нити может быть произведен на любом ее участке. Если отсчет по рейке производится с помощью углового биссектора высокоточного нивелира, то в зависимости от расстояния до рейки используются различные участки этого биссектора.

Назначение устройств ориентирования заключается в обеспечении однозначного ориентирования визирной оси нивелира относительно отвесной линии.

По сравнению с теодолитом требуемая точность выполнения ориентирования у нивелиров выше в несколько раз. Назначение рабочих мер состоит в обеспечении измерения превышения на станции. В отличие от процесса измерения углов при нивелировании используются рабочие меры, являющиеся частями конструкций как нивелира, так и визирных целей (реек).

Принципиальная схема нивелира с уровнем приведена на рис. 2.

Основными частями нивелира с уровнем являются зрительная труба 1, цилиндрический уровень 2, трегер 3 и элевационный винт 4. В высокоточных нивелирах перед объективом устанавливается плоскопараллельная пластинка 5, которая является составной частью оптического микрометра; при этом оптический микрометр, в свою очередь, является составной частью общей конструкции нивелира. Последние модификации точных нивелиров также снабжаются оптическим микрометром, который представляет собой, надеваемую на объектив, насадку. При нивелировании технической точности насадкой (оптическим микрометром) можно не пользоваться или ее можно снять вообще.

3.3 Теодолит и его устройство.

На обеих осях теодолита имеются градуированные круги, значения с которых можно считать с помощью увеличивающих линз.

Горизонтальный и вертикальный круги являются главными частями теодолита — угломерного прибора, при помощи которого измеряют горизонтальные и вертикальные углы.

На рисунке приведена схема теодолита.

Схема теодолита: 1 — стеклянный горизонтальный круг;

2 — стеклянный вертикальный круг; 3 — алидада; 4 — зрительная труба; 5 — колонка; 6 — цилиндрический уровень; 1 — окулярная часть отсчетного микроскопа; 8 — подъемный винт; 9 — подставка; 10 — головка штатива; 11 — закрепительный винт

Теодолит устанавливается на треноге или трегере, имеющих четыре винта (или в некоторых современных теодолитах – три винта) для его быстрого горизонтирования. Перед использованием теодолит должен быть установлен строго вертикально над измеряемой точкой (отцентрован), и его вертикальная ось должна быть выровнена с местной силой тяжести (выровнен). В ранних моделях теодолитов это делалось с помощью свинцового, лазерного или оптического отвеса, в поздних используется ватерпас. Для быстрого и точного центрования и выравнивания существуют специальные методы.

Источник

Лекция №2. 1. Основы строительной физики

основы СТРОИТЕЛЬНОЙ ФИЗИКИ

1. Основы строительной физики.

1.1. Элементы теплотехники.

1.2. Элементы звукоизоляции.

1.3. Элементы светотехники.

1. Основы строительной физики.

При архитектурно-строительном проектировании зданий и помещений решают задачи, связанные с явлениями и законами физики. Эти задачи определяют назначение строительной физики, с помощью которой разрешаются вопросы, возникающие в строительной практике. В строительную физику входят теплофизика, звукоизоляция, инсоляция и другие ее элементы.

1.1. Элементы теплотехники.

Тепловая защита здания— теплозащитные свойства совокупности ограждающих конструкций здания, обеспечивающие заданный уровень расхода тепловой

энергии (теплопоступлений) зданием с учетом воздухо-обмена помещений не выше допустимых пределов, а также их воздухопроницаемость и защиту от переувлаж-

нения при оптимальных параметрах микроклимата помещений.

Тепловой режим здания— совокупность всех факторов и процессов, формирующих тепловой внутренний микроклимат здания в процессе эксплуатации

Сопротивление теплопередаче ограждающих конструкций выражает способность конструкций сопротивляться прохождению через них теплоты.

,

Термическое сопротивление для однослойной однородной ограждающей конструкции определяется по следующей формуле:

,

Если конструкция многослойная, то RК следует определять как сумму термических сопротивлений слоев

Конструкция считается с точки зрения теплотехники пригодной для применения, если сопротивление теплопередачи всей конструкции больше или равно требуемому значению сопротивления теплопередачи ,

R0 ³ .

Для жилых и общественных зданий конструкций следует определять согласно с ДБН. Для промышленных зданий нормативное значение сопротивления находится по формуле

,

де n – коэффициент, который принимается в зависимости от положения наружной поверхности ограждения по отношению к наружному воздуху (СНиП II-3-79**);

Dt н – нормативный температурный перепад между температурами внутреннего воздуха и температурой внутренней поверхности ограждения, 0 С

tн – расчетная зимняя температура наружного воздуха, 0 С.

Распределение температур в толщине конструкции (tх) на расстоянии х от внутренней поверхности может быть найдено, зная термические сопротивления слоев конструкции.

,

Влажностный режим ограждающих конструкций оказывает существенное влияние на их теплотехнические качества.

Повышение влажности приводит к ухудшению их эксплуатационных качеств, поэтому не следует применять в наружных ограждениях конструкции и материалы, имеющие повышенную влажность. В период эксплуатации здания необходимо обеспечить требуемый влажностный режим ограждающих конструкций, предохранения их от увлажнения.

1.2. Элементы звукоизоляции

. Шумовое воздействие на человека характеризуется уровнем силы звука:

или , [дБ]

По условиям возникновения и распространения шум различают воздушный и ударный. Воздушный шум возникает и передается по воздушной среде, ударный возникает и распространяется по конструктивным элементам здания. Конструктивные элементы вследствие вибраций могут излучать воздушные шумы, причиной возникновения которых является ударный шум.

Борьба с шумом – одна из необходимых задач при проектировании и строительстве здания. Можно предложить следующие меры по ограничению внутренних шумов: применение мало- и бесшумного оборудования, усовершенствование существующих машин и механизмов; максимальную локализацию шума непосредственно у источников; поглощение возникающего шума звукопоглощающей отделкой или перегородкой; группировку помещений по их шумности.

Внешний шум может быть ограничен планировочными решениями, задерживающими его распространение по территории; учетом господствующих ветров в борьбе с формированием шумового поля на застраиваемых территориях; устройством шумозащитных экранов путем использования зеленных насаждений, рельефа местности, инженерных сооружений; применением усовершенствованных покрытий дорог и вынесением магистралей в шумобезопасные зоны.

1.3. Элементы светотехники

При проектировании освещения помещений строящихся и реконструируемых зданий и сооружений различного назначения надлежит соблюдать нормы, приведенные в ДБН. Проектирование естественного освещения помещений заключается в целесообразном выборе размеров, форм и расположения световых проемов, создающих необходимые благоприятные условия освещенности помещений.

Критерием оценки световой среды является освещенность (Е) – поверхностная плотность светового потока, определяемая соотношением:

, (лк),

где F – величина светового потока, лм;

Это удобно применять при расчетах искусственного освещения. Для дневного света применяют коэффициент естественного освещения (КЕО):

,

где Ев – освещенность расчетной точки внутри помещения, лк;

Ен – освещенность точки под открытым небосводом, лк.

Порядок расчетного определения площади светопроемов:

1. Определение требований к естественному освещению помещений;

2. Определение нормативного значения КЕО по разряду преобладающих в помещении зрительных работ;

3. Выполнение расчета естественного освещения;

4. Сравнение расчетного с нормативным значением КЕО и внесение изменений в площади светопроемов и повторный расчет (при необходимости).

Нормативное значение КЕО (ен) определяется по формуле:

,

где ен III – нормативное значение КЕО для зданий, располагаемых в III поясе светового климата;

m – коэффициент светового климата;

с – коэффициент солнечного климата.

Полученные значения по этой формуле следует округлять до десятых долей.

Расчетное значение КЕО может отличаться от нормативного не более чем на ±10%

.

Расчетное значение КЕО для боковых проемов определяется по формуле:

,

где eб – геометрический КЕО в расчетной точке;

q – коэффициент, учитывающий неравномерную яркость неба при сплошной облачности;

eзд – геометрический КЕО в расчетной точке, учитывающий свет, отраженный от противостоящих зданий;

R – коэффициент, учитывающий относительную яркость противостоящего здания;

r1 – коэффициент, учитывающий повышение КЕО благодаря свету, отраженному от внутренних поверхностей помещения и подстилающего слоя, прилегающего к зданию;

t0 – общий коэффициент светопропускания оконного заполнения;

Кз – коэффициент запаса.

,

где n1 и n2 – количество лучей, проходящих через оконный проем, определяемое соответственно, по графику Данилюка I и II.

Расчетное значение КЕО для верхних проемов определяется по формуле:

,

где eв – геометрическое КЕО в расчетной точке при верхнем освещении;

eср – среднее значение геометрического КЕО при верхнем освещении;

r2 – коэффициент, учитывающий повышение КЕО при верхнем освещении, благодаря свету, отраженному от поверхностей помещения;

Кф – коэффициент, учитывающий тип фонаря.

,

где n3 и n2 – количество лучей, проходящих от неба в расчетную точку через световые проемы, определяемое соответственно, по графику Данилюка III и II.

1. Архитектура: Учеб. для студентов сантехн. специальностей строит. вузов / Орловский Б.Я., Магай А.А., Бабаян Г.А., Сербинович П.П.; Под ред. Б.Я. Орловского.- 2-е изд., перераб. и доп.- М.: Высш. шк., 1984.- с. 51 – 66.

2. Архитектура гражданских и промышленных зданий. Учебник для вузов. В 5 т. Под общ. ред. В.М. Предтеченского. Т. II. Основы проектирования. Изд. 2-е, перераб. и доп. М.: Стройиздат, 1976. с. 22 – 26, 70 – 75, 97 – 106, 169 – 176.

3. Сербинович П.П. Архитектура гражданских и промышленных зданий. Гражданские здания массового строительства. Учеб. для строительных вызов. Изд. 2-е, испр. и доп. М.: Высшая школа, 1975. с. 15 – 21, 30 – 37, 58 – 62.

4. СНиП 2.01.01-82. Строительная климатология и геофизика. / Госстрой СССР.- М.: Стройиздат, 1983.- с. 2 – 41.

5. СНиП II-3-79**. Строительная теплотехника. / Госстрой СССР.- М.: ЦИТП Госстроя СССР, 1986.- с. 4 – 6.

6. СНиП II-12-77. Защита от шума. / Госстрой СССР.- М.: Стройиздат, 1978.- с. 2 – 21.

7. СНиП II-4-79. Естественное и искусственное освещение / Госстрой СССР.- М.: Стройиздат, 1980.- с. 17 – 18, 38 – 41.

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Применение в строительстве диорита
  • Применение в строительстве графита
  • Применение в строительстве гнейса
  • Применение в строительстве гипсокартона
  • Применение в строительстве галита