Применение рычага в строительстве

Простые механизмы. Подъемный механизм. Простые механизмы в быту

С самой древности человек пытается облегчить свой труд. Для этого он применяет различные приспособления. Что собой представляют простейшие механизмы? Какие существуют разновидности этих приспособлений? Чем отличаются простые и сложные механизмы? Об этом и многом другом – далее в статье.

Общая информация

Простые механизмы. Примеры

Существует несколько видов приспособлений:

а) винт применяется в шурупах, как сверло в отбойных молотках, дрелях; может служить и как подъемный механизм (Архимедов винт);

б) клин способствует увеличению давления за счет концентрирования массы на небольшой площади. Применяется в пуле, лопате, копье.

Рычаг – приспособление, описанное Архимедом. Может выступать как спусковой крючок, выключатель.

а) ворот применяется для ременной передачи и поднятия воды из колодца.

Колесо (изобретено в 3 тыс. до н. э. шумерами) является составной частью системы зубчатой передачи, применяется в транспорте.

Поршень способствует использованию энергии нагретых расширяющихся газов либо пара. Применяется данное приспособление в паровых машинах и огнестрельном оружии.

Ворот

Это приспособление представляет собой барабан (цилиндр), к которому прикрепляется рукоятка. Как правило, его применяли как подъемный механизм для поднятия воды из колодца. Тот выигрыш в силе, какой получается при использовании ворота, определяется отношением радиуса той окружности, по которой совершается движение рукоятки, к радиусу цилиндра (барабана), на который наматывается веревка. К современному типу ворота относится лебедка. Это приспособление представляет собой систему, включающую цилиндр и два зубчатых колеса разного радиуса. Выигрыш в силе, который в общем дает лебедка, определяют совокупным действием двух воротов. Современные устройства дают выигрыш в сорок-сто раз.

Наклонная плоскость

Этот простой механизм также часто применяют при подъеме тяжелых тел. Выигрыш в силе определяют отношением длины самого приспособления к его высоте при условии малого трения. Зачастую, для создания большой силы (например, для работы ледокола или для колки дров) используют вид наклонной плоскости – клин. Его действие основывается на том, что при большом усилии в направлении обуха формируются большие силы, перпендикулярные боковым поверхностям устройства. Еще одной разновидностью наклонной плоскости является винт. Так же как и клин, это устройство способно менять направление либо числовое значение прилагаемой силы.

Простые механизмы. Рычаг

Это твердое тело, способное вращаться вокруг опоры (неподвижной). Наименьшее расстояние, которое разделяет точку опоры и прямую, вдоль которой воздействует сила на рычаг, называется плечом силы. Чтобы его найти, следует опустить перпендикуляр из точки опоры на линию действия усилия. Длина данного перпендикуляра и будет являться плечом. F1 и F2 – действующие на рычаг силы. Плечи, действующие на устройство – L1 и L2. Рычаг тогда находится в равновесии, когда действующие на него силы обратно пропорциональны плечам. Данное правило можно представить в виде формулы: F1 / F2 = L1 / L2. Этот принцип был установлен Архимедом. Данное правило показывает, что большую силу при помощи рычага можно уравновесить меньшей. Сила, приложенная к одному плечу, во столько раз больше той, что приложена к другому, во сколько одно плечо больше второго.

Как применяет приспособления человек сегодня?

Весьма распространены простые механизмы в быту. Так, достаточно сложно было бы открыть водопроводный кран, если бы не было у него небольшой ручки, которая представляет собой достаточно эффективный рычаг. То же можно сказать и о гаечном ключе, при помощи которого осуществляется откручивание или закручивание гаек или болтов. Чем длиннее рукоятка, тем легче будет осуществляться действие. Так, при работе с тяжелыми либо крупными гайками и болтами при ремонте сложных механизмов, станков, автомобилей, применяют ключи с рукоятками до одного метра в длину. Самая обычная дверь также является одним из видов рассматриваемых приспособлений.

Комплексное применение приспособлений

Заключение

Как стало ясно, простые механизмы существенно облегчают труд человека. Они могут состоять из одной или нескольких деталей. При этом даже при наличии двух и более элементов могут оставаться простыми, но могут являться и достаточно сложными. Различные агрегаты, печатные прессы, двигатели включают в себя несколько деталей. Среди элементов есть и рычаги, блоки, винты, колеса на осях, наклонные плоскости, клин. Все эти приспособления работают в комплексе. Благодаря им человек существенно облегчает труд. Передача механической энергии от одной части устройства к другой может осуществляться по-разному. Цепи, ремни, шестерни или зубчатые колеса считаются наиболее распространенными устройствами, способствующими передаче усилия и заставляющими отдельные элементы двигаться медленнее или быстрее, в том или ином направлении. Сложными и высокоскоростными устройствами управляют, как правило, электронные приборы. Электрические датчики благодаря особой настройке показывают, когда необходимо включать тот или иной механизм, следят также за корректной и стабильной работой системы.

Источник

Рычаги в быту и технике

Рычаги широко распространены в быту. Вам было бы гораздо сложнее открыть туго завинченный водопроводный кран, если бы у него не было ручки в 3-5 см, которая представляет собой маленький, но очень эффективный рычаг. То же самое относится к гаечному ключу, которым вы откручиваете или закручиваете болт или гайку. Чем длиннее ключ, тем легче вам будет открутить эту гайку, или наоборот, тем туже вы сможете её затянуть. При работе с особо крупными и тяжелыми болтами и гайками, например при ремонте различных механизмов, автомобилей, станков, используют гаечные ключи с рукояткой до метра.

Другой яркий пример рычага в повседневной жизни – самая обычная дверь. Попробуйте открыть дверь, толкая её возле крепления петель. Дверь будет поддаваться очень тяжело. Но чем дальше от дверных петель будет располагаться точка приложения усилия, тем легче вам будет открыть дверь.

Естественно, рычаги так же повсеместно распространены и в технике. Самый очевидный пример – рычаг переключения коробки передач в автомобиле. Короткое плечо рычага – та его часть, что вы видите в салоне. Длинное плечо рычага скрыто под днищем автомобиля, и длиннее короткого примерно в два раза. Когда вы переставляете рычаг из одного положения в другое, длинное плечо в коробке передач переключает соответствующие механизмы. Здесь так же очень наглядно можно увидеть, как длина плеча рычага, диапазон его хода и сила, необходимая для его сдвига, соотносятся друг с другом.

Рычаги можно встретить на стройке: экскаватор, подъемный кран, тачка, лом.

Примером рычага, дающего выигрыш в силе, могут служить ножницы для резки бумаги, кусачки, ножницы для резки металла, лопата.

Примером рычага, дающего проигрыш в силе, является весло. Это необходимо для получения выигрыша в расстоянии. Чем длиннее часть весла опускаемого в воду, тем больше его радиус вращения и скорость движения.

Таким образом, мы можем убедиться в том, что механизм рычага очень широко распространен как в нашем повседневном быту, и в различных механизмах.

Мы вправе без преувеличения сказать, что каждый человек го­раздо сильнее самого себя, т. е. что наши мускулы развивают си­лу, значительно большую той, ко­торая проявляется в наших дей­ствиях.

Целесообразно ли такое устрой­ство? На первый взгляд как будто нет,— мы видим здесь потерю си­лы, ничем не вознаграждаемую. Од­нако вспомним старинное «золотое правило» механики: что теряется в силе, выигрывается в перемеще­нии. Тут и происходит выигрыш в скорости: наши руки движутся в 8 раз быстрее, чем упра­вляющие ими мышцы. Тот способ прикрепления мускулов, который мы видим у животных, обеспечивает конечностям проворство движений, более важное в борьбе за существо­вание, нежели сила. Мы были бы крайне медлительными существами, если бы наши руки и ноги не были устроены по этому принципу.

Источник

Применение рычага в строительстве

Войти

Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal

РЫЧАГ, БЛОК И НАКЛОННАЯ ПЛОСКОСТЬ

Уже в глубокой древности для подъема тяжестей человек стал применять простые механизмы: рычаг, ворот и наклонную плоскость. Позже к ним прибавились еще блок и винт. Эти несложные приспособления позволяли многократно увеличить мускульные усилия человека и справиться с такими тяжестями, которые при других обстоятельствах были бы совершенно неподъемными. Принцип действия простых механизмов хорошо известен. Например, если нужно втащить груз на определенную высоту, всегда легче воспользоваться пологим подъемом, чем крутым. Причем, чем положе уклон, тем легче выполнить эту работу. Эта связь имеет четкое математическое выражение.

Если наклонная плоскость имеет угол d, то втащить груз по ней будет в 1/sin d раз легче, чем поднять его вертикально. Если угол составляет 45 градусов, наше усилие будет в 1, 5 раза меньше, если 30 градусов — в 2 раза меньше, при угле в 5 градусов мы потратим в 11 раз меньше усилий, а при угле в 1 градус — в 57 раз! Правда, все, что выигрывается в силе, теряется в расстоянии, ибо во сколько раз уменьшается наше усилие, во столько же раз возрастает расстояние, на которое придется тащить груз. Однако в тех случаях, когда время и расстояние не играют большой роли, а важна сама цель — поднять груз с наименьшим усилием, наклонная плоскость оказывается незаменимым помощником. Другим простым механизмом — рычагом — наши далекие предки постоянно пользовались для того, чтобы приподнимать и сдвигать с места тяжелые камни и бревна. Рычаг позволяет достигнуть многократного выигрыша в силе самыми простыми и доступными средствами. Положив длинный и крепкий шест на обрубок полена (опору) и подсунув второй конец его под камень, человек превращал шест в простейший рычаг. В этой ситуации на камень начинали действовать два вращающих момента, один от веса камня, а другой — от руки человека. Для того чтобы камень сдвинулся с места, «подталкивающий» момент от мускульной силы человека должен быть больше «прижимающего» от веса камня. Момент, как известно, равен произведению приложенной силы на длину плеча рычага (в данном случае плечо — это расстояние от конца шеста (точки приложения силы) до полена (точки опоры)). Легко подсчитать, что если плечо, на которое давит человек в 15‑20 раз длиннее того, которое подсунуто под камень, то сила человека соответственно тоже возрастает в 15‑20 раз. То есть человек, не очень напрягаясь, может сдвинуть камень весом в тонну! Неподвижный блок — третий механизм, получивший распространение в древности — представляет собой колесо с желобом, ось которого жестко прикреплена к стене или потолочной балке. Перекинув через колесо веревку и прикрепив ее противоположный конец к грузу, можно поднять его на высоту крепления блока. Неподвижный блок не дает выигрыша в силе, но зато предоставляет возможность изменить ее направление, что зачастую при подъеме тяжестей тоже имеет огромное значение.

При всей своей примитивности простые механизмы многократно расширяли возможности древнего человека. Для того чтобы убедиться в этом, достаточно вспомнить о гигантских постройках древних египтян. Например, пирамида Хеопса имела высоту 146 м. Подсчитано, что для ее возведения потребовалось 23300000 каменных глыб, каждая из которых весила в среднем около 2, 5 тонн. Но и это был не предел — при строительстве храмов египтяне транспортировали, поднимали и устанавливали колоссальные обелиски и статуи, вес которых составлял десятки и сотни тонн! Какие же механизмы использовали эти древние строители для того, чтобы поднимать на огромную высоту исполинские глыбы и статуи? Оказывается, все это можно сделать с помощью тех же простых устройств — блока, рычагов и наклонной плоскости. Колоссальные статуи и каменные глыбы перетаскивались на массивных салазках, которые тянуло большое количество людей. Каждый из работавших имел веревку, переброшенную через плечо. Под салазки подкладывались катки, которые после протаскивания груза подбирались и снова подкладывались под полозья. Для преодоления препятствий салазки приподнимались с помощью рычагов. В качестве них употребляли стесанные бревна. Упорами служили специально изготовленные клинья разного размера. Работа сопровождалась музыкой. Главным подъемным приспособлением египтян была наклонная плоскость — рампа. Остов рампы, то есть ее боковые стороны и перегородки, на небольшом расстоянии друг от друга пересекавшие рампу, строились из кирпича; пустоты заполнялись тростником и ветвями. По мере роста пирамиды рампа надстраивалась. По этим рампам камни тащили на салазках таким же образом, как и по земле, помогая себе при этом рычагами. Угол наклона рампы был очень незначительным — 5 или 6 градусов. Таким образом, например, наклонная дорога к пирамиде Хафра при высоте подъема в 46 метров имела длину около полукилометра. Соответственно для сооружения более высоких пирамид приходилось строить рампу еще длиннее.

К иным приемам прибегали при подъеме длинных каменных глыб и статуй. Для этого применяли блоки. Однако поднять с помощью блоков огромные камни, какими являлись обелиски до 300 тонн весом и гигантские статуи царей, достигавшие 1000 тонн веса, невозможно. Для установки таких статуй и обелисков приходилось проводить значительную подготовительную работу. В качестве подъемного приспособления здесь опять выступала наклонная плоскость — рампа. Прежде всего по обе стороны пьедестала возводились каменные стены. К одной из них пристраивалась наклонная плоскость, высотой несколько меньше, чем высота устанавливаемого обелиска. Все четыре стены рампы образовывали как бы кирпичный колодец. В одной из его стен на уровне земли делался сквозной коридор. Все пространство внутри засыпалось песком. Затем по наклонной плоскости втаскивали основанием вперед законченный обелиск. После этого через коридор в стене начинали выносить песок, и обелиск под собственной тяжестью начинал плавно опускаться на пьедестал, постепенно принимая вертикальное положение. После установки стена и рампа разбирались.

Широко применяя наклонную плоскость и рычаг, древние египтяне, кажется, не задумывались о законах, которые лежат в основе простых механизмов. По крайней мере, до нас не дошло ни одного вавилонского или египетского текста с описанием их действия. Эту работу провели только ученые Древней Греции. Классические расчеты действия рычага, наклонной плоскости и блока принадлежат выдающемуся античному механику Архимеду из Сиракуз. Архимед изучил механические свойства подвижного блока и применил его на практике. По свидетельству Афинея, «для спуска на воду исполинского корабля, построенного сиракузским тираном Гиероном, придумывали много способов, но механик Архимед один сумел сдвинуть корабль с помощью немногих людей; Архимед устроил блок и посредством него спустил на воду громадный корабль; он первый придумал устройство блока». Из этого свидетельства видно, что Архимед не только изучил свойства простых механизмов, но и сделал следующий шаг — стал сооружать на их основе более сложные машины, преобразующие и усиливающие движение. Возможно, что корабль ему удалось сдвинуть с помощью системы подвижных и неподвижных блоков (подобной современным талям), используя которые можно многократно увеличить прилагаемое усилие. Когда на родной город Архимеда напали римляне, он применил свои знания в военной технике. По его чертежам сиракузяне построили множество самых разнообразных боевых машин. Среди них были метательные орудия; поворотные краны, низвергавшие на римские корабли огромные камни; привязанные к цепям железные лапы, которые захватывали и переворачивали вражеские корабли.

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Применение ручной дуговой сварки в строительстве
  • Применение рубероида в строительстве
  • Применение роботов в строительстве
  • Применение ресурсного метода ценообразования при строительстве
  • Применение ремонтных сборников в новом строительстве