Применение холода в строительстве

Выбор надежного теплоизоляционного материала для загородного дома

Собственники загородного жилья нередко сталкиваются с проблемой выбора подходящего утеплителя, так как на рынке представлен широчайший ассортимент теплоизоляционных изделий с самыми разными характеристиками. Даже профессиональные строители порой не могут прийти к единому мнению и дают прямо противоположные оценки одним и тем же материалам. И все же есть простые критерии выбора, понимание которых поможет покупателю приобрести наиболее оптимальный в его случае утеплитель.

Современные утеплители имеют следующие свойства:

• отличные теплоизоляционные характеристики;

• способность сохранять свою форму;

• отсутствие швов в теплоизоляционном слое;

• безопасность для окружающей среды.

Качественные теплоизоляционные материалы обладают перечисленными характеристиками. К ним можно отнести изделия на основе каменной ваты, пенополиуретана, эковаты. Эти материалы позволяют создать слой теплоизоляции практически без щелей, а благодаря отсутствию вредных веществ они могут быть использованы для утепления жилых загородных домов. Срок службы подобных утеплителей может составлять десятки лет.

Минераловатные утеплители

Теплоизоляционные изделия на основе минваты производятся в огромных объемах. Их изготавливают из базальта и доломита, шлаков, стеклянного боя. Самыми качественными из них являются базальтовые утеплители.

Каменная вата обладает высокой стойкостью к химическому воздействию, не подвержена горению и гниению, не боится грызунов, не теряет своей формы долгие годы. Минераловатные утеплители позволяют повысить пожаробезопасность строительных конструкций, увеличить срок службы здания, улучшить микроклимат в жилых помещениях.

Благодаря наличию микропустот между каменными волокнами внутри минераловатного утеплителя циркулирует воздух, выводя лишнюю влагу и препятствуя образованию конденсата. В утепленных таким материалом конструкциях снижается количество влаги, не появляется плесень и грибок. Это способствует поддержанию здоровой атмосферы в жилых помещениях, а также благоприятно сказывается на прочностных и эксплуатационных характеристиках строительных конструкций.

Минеральная вата может прослужить много лет, сохраняя свои теплоизоляционные показатели. Главным условием безупречной службы утеплителя является наличие гидроизоляционных и пароизоляционных пленок, а также правильный монтаж плит, матов и рулонов на основе каменной ваты. Профессионально выполненная укладка этих изделий позволяет предотвратить появление зазоров на стыках и щелей между утеплителем и конструкциями.

Теплоизоляция с помощью эковаты

Эковата является экологичным, долговечным и эффективным теплоизоляционным материалом. Она изготавливается из целлюлозы, полученной при переработке макулатуры. Хотя компоненты, из которых состоит эковата, являются горючими, утеплитель можно отнести к пожаробезопасным материалам. При воздействии огня верхний слой целлюлозы обугливается и предотвращает дальнейшее горение внутренних слоев. Кроме того, содержащаяся в капиллярах целлюлозы влага замедляет процесс горения. Для повышения стойкости к огню в состав эковаты добавляются антипирены.

Для утепления зданий эковатой используют способ напыления. При этом получается абсолютно бесшовный слой теплоизоляции, не подверженный усадке и растрескиванию. Увлажненная целлюлозная масса надежно склеивается с различными конструкциями из металла, дерева, бетона и кирпича.

Эковата, в отличие от минераловатных утеплителей, почти не меняет своих теплоизоляционных показателей при насыщении влагой. Это объясняется тем, что вода впитывается внутрь капилляров, а не прилипает к волокнам, как в каменной вате. Соответственно, пространство между волокнами остается сухим, благодаря чему теплопроводность утеплителя не снижается.

Главное отличие пенополиуретана от других теплоизоляционных изделий состоит в том, что он имеет значительно более низкий коэффициент теплопроводности. Он утепляет конструкции вдвое эффективнее по сравнению с минеральной ватой и пенопластом. С помощью технологии напыления можно создать бесшовный слой теплоизоляции. При этом не требуются гидроизоляционные материалы, так как пенополиуретан не впитывает влагу и не теряет своих свойств во влажной среде.

Этот утеплитель прочно склеивается с теплоизолируемыми конструкциями, не отслаивается и не разрывается при механических нагрузках. Обладая хорошей эластичностью, пенополиуретан сохраняет свою целостность при вибрациях, усадках строительных конструкций.

В пенополиуретане отсутствуют летучие, токсичные компоненты. Это биостойкий и экологически безопасный материал, пригодный для использования внутри помещений.

Одно из важнейших преимуществ этого материала заключается в высокой скорости монтажа. Метод напыления позволяет практически без усилий выполнить утепление конструкций большой площади, закончить работы в сжатые сроки.

Использование вышеперечисленных теплоизоляционных материалов способствует улучшению условий проживания в загородном доме, снижению тепловых потерь и сокращению затрат на отопление. Профессиональная укладка утеплителей гарантирует безупречное функционирование теплоизоляционного слоя на протяжении десятилетий.

Источник

Промышленные технологии, применяющие холод

Холодильная технология пищевых продуктов охватывает сельское хозяйство; перерабатывающую — мясную и молочную промышленность; торговлю; транспорт (автомобильный, железнодорожный и водный); рыбодобывающую и рыбоперерабатывающую с рыбопромысловыми и перерабатывающими базами и судами.

Для осуществления холодильной технологии пищевых продуктов в СССР создана холодильная цепь, звенья которой предназначены для создания необходимых температурно-влажностных режимов для холодильной обработки, хранения, транспортирования и реализации пищевых продуктов.

С целью обеспечения длительного сохранения высокого качества скоропортящихся продуктов холодильные установки должны поддерживать нужный технологии температурный режим среды: для охлаждения до —5°С, замораживания —35 −40°С, хранения продуктов в охлажденном виде 0 −2°С, в замороженном —20 −30°С. Температурный режим транспортных рефрижераторов зависит от вида перевозимых продуктов и предварительного процесса холодильной технологии — их охлаждения или замораживания.

Перерабатывающая промышленность и торговля являются крупными потребителями холода. С помощью холодильной технологии в этих отраслях обрабатывают не менее 50 млн. т различных продуктов животного и растительного происхождения. Потребность в холоде непрерывно возрастает. Именно из-за недостаточного использования искусственного холода в мире теряется в среднем 25—30% произведенных пищевых продуктов.

Развивающейся отраслью промышленности является концентрирование соков, получение сухих порошков из концентрированных соков, а также продуктов с промежуточной влажностью с целью их хранения при обычных температурах, сублимационная сушка.

Холодильная цепь пищевой технологии использует различные холодильные установки: одно- и двухступенчатого сжатия. Для осуществления технологии обработки холодом используют как холодильники, так и различные морозильные аппараты.

В технологических процессах в нефтяной, газовой и химической промышленности применяют искусственный холод в диапазоне умеренных температур (примерно до —100°С).

В нефтяной промышленности искусственное охлаждение используют в технологических процессах, где применяют в основном системы непосредственного кипения холодильного агента в поверхностных аппаратах. Выбор холодильного агента определяется условиями работы предприятий. Чаще всего используют углеводороды, которые имеются в достаточном количестве на данном производстве. Они имеют высокую молекулярную массу, и поэтому возможно применение в холодильной установке центробежных компрессоров.

В газовой промышленности искусственный холод применяют при подготовке газа к транспортированию и при переработке нефтяных и природных газов газоконденсатных месторождений. При этом используют как внешние, так и. внутренние холодильные циклы, в которых холод получают в процессе переработки газа (дросселирование жидкостей или расширение газа), а также комбинированные циклы. Температура транспортируемого газа —5 −25°С, давление 5,5 МПа. Потребность в холоде измеряется десятками тысяч киловатт и требует применения высокопроизводительного турбокомпрессорного оборудования с газовыми или паровыми приводами компрессоров. В холодильных установках используют аппараты воздушного охлаждения, а в качестве хладагента — углеводороды (этан, пропан), которые получают при переработке газов.

Одним из основных процессов, применяемых при переработке газа, является процесс низкомолекулярной конденсации, основанный на различии температур конденсации компонентов, входящих в состав газа. Низкотемпературная конденсация компонентов проходит при разных температурах на одно-, двух- и трехступенчатых температурных уровнях, которые получают в соответствующих холодильных установках.

В химической промышленности (получение этилена, фармацевтических и биохимических препаратов, производство азотное, синтетического каучука, хлора и др.) имеется многообразие систем холодоснабжения с различным типом холодильных машин, начиная с небольших поршневых компрессоров и кончая крупными центробежными агрегатами производительностью в несколько тысяч киловатт. Широко применяют абсорбционные установки, использующие теплоту технологических процессов, либо теплофикационные отборы ТЭЦ.

Азотное производство включает предприятия синтеза аммиака и некоторые производства азотной кислоты. Основная часть холода при производстве аммиака потребляется агрегатом синтеза для конденсации аммиака из азотно-водородно-аммиачной смеси высокого давления при температурах кипения хладагента (—10 −12°С), а также для конденсации аммиака при температурах кипения —30 −34°С. Для производства аммиака применяют теплоиспользующие абсорбционные водоаммиачные машины и аммиачные центробежные компрессорные агрегаты. Для производства этилена используют искусственный холод температурных уровней от 6 до —100°С. При этом применяют системы непосредственного кипения на холодильниках агентах—этилене и пропилене (продуктах данного производства).

Производство синтетического каучука основано на полимеризации непредельных углеводородов — мономеров, для чего требуется искусственный холод на температурном уровне от 7 до —40°С. Вторая стадия технологии получения каучука проводится при —100°С.

Хлор выделяется из газовой смеси в результате фракционной конденсации, где применяют абсорбционные водоаммиачные холодильные установки с температурой кипения —45°С или фреоновые установки с температурным режимом 5, —20, —65°С, оборудованные центробежными компрессорными машинами.

Крупным потребителем холода в химической промышленности является производство химических волокон, изготовленных из различных видов синтетических полимеров. В данной отрасли применяют только системы охлаждения с промежуточным хладоносителем с температурным уровнем 20 −10°С. Потребность в холоде крупных комбинатов достигает 35—58 МВт.

Технологические процессы в производстве химико-фармацевтических препаратов, витаминов и антибиотиков сопровождаются потреблением искусственного холода на температурном уровне — 10 —15°С.

При получении белково-витаминных концентратов путем синтеза смеси жидких парафинов нефти и минеральных солей со специальной культурой дрожжей потребность в холоде весьма значительна: 1 т продуцента в производстве белково-витаминных концентратов выделяет 16 ГДж теплоты, производство лизина — до 54,5 ГДж. При современной мощности заводов потребность в холоде измеряется десятками тысяч киловатт.

Холод применяется при термической обработке сталей, стабилизации и восстановлении размеров деталей, запрессовке для создания неподвижных посадок, для охлаждения ванн анодирования, старения алюминиевых сплавов, осушке сжатого воздуха, гибке труб с замороженной в них водой, в установках кондиционирования воздуха.

Температурные режимы перечисленных холодильных технологий обработки металлов находятся в пределах —30 −120°С. В верхнем интервале можно использовать серийно выпускаемые парокомпрессионные машины двухступенчатого сжатия (до —60°С) и каскадные машины (до —80°С). Возможно снижение температурного уровня до —120°С, если применить смеси холодильных агентов.

Источник

Искусственный холод и области его применения

1.1. Общие сведения [1]

Холод – это та же теплота, температурный уровень которой, ниже температурного уровня окружающей среды. Поэтому все известные законы термодинамики и теплопередачи в области низких температур такие же как и в области высоких температур.

Холод более низких температур люди смогли получать только тогда, когда были созданы устройства, которые теперь обобщенно называются трансформаторами тепла.

Основное назначение трансформаторов тепла – отвод теплоты от теплоотдатчика (охлаждаемой среды) на сравнительно низком температурном уровне и подвод ее к теплоприемнику (охлаждающая или нагреваемая среда) на более высоком температурном уровне. Создание таких устройств открыло новое, самостоятельное направление в технике – хладотехника.

Хладотехника – это техника низких температур. В настоящее время оределились два направления использования хладотехники:

1) использование низких температур для улучшения, интенсификации известных или создания новых технологических процессов. Это разделение газов, опреснение и очистка воды, обработка материалов, консервирование продуктов и медицинских препаратов, укрепление грунтов в строительстве и т.д. и т.п.;

2) у ряда веществ при низких температурах открываются совершенно новые свойства, которые можно использовать при создании качественно иных систем. Это сверхпроводимость, сверхтекучесть, сверхскольжение, термомагнитный эффект и другие явления.

Современная техника низких температур условно разделяется на две части, которые отличаются друг от друга только температурным диапазоном работы:

а) криогенная техника;

б) холодильная техника.

Криогенная техника – это область получения холода с температурой ниже 120 К (-153°С). Эта граница обусловлена температурой сжижения природного газа (температура сжижения метана –161,30°С, включена в область криогеники).

Основными рабочими веществам криогенной техники являются воздух и продукты его разделения: азот, кислород, аргон, водород, гелий, криптон, неон, ксенон. Используется эта техника, главным образом, для получения газов из смесей.

Холодильная техника используется для получения холода с температурой выше 120 К (от +7 до –153 °С). Этот холод применяется в самых различных целях.

Особняком стоят комбинированные холодильно-теплонасосные установки. Они позволяют одновременно с выработкой холода получать теплоту потребительских параметров. Обычно не выше 120-180°С. Более высокие температуры экономически целесообразнее получать за счет топлива.

Наиболее крупными потребителями искусственного холода являются химическая, нефтехимическая и газовая промышленности. Особенности технологий определяют повышенные требования к холодильному оборудованию: большие холодопроизводительности; высокая надежность; длительный ресурс непрерывной работы; возможность использования дешевых хладагентов (продукты собственных технологий); возможность использования вторичных энергоресурсов; максимальная автоматизация и др.

Крупными потребителями холода являются также системы кондиционирования воздуха, пищевая, машиностроительная и металлургическая промышленности, строительство, производство сухого и водяного льда, водоопреснительные и водоочистительные установки, медицина и др.

Более подробные сведения о применении холода в народном хозяйстве можно найти в [2].

1.2. Способы получения низких температур:

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Применение хлорной извести в строительстве
  • Применение хлорного железа в строительстве
  • Применение хлористого кальция в строительстве
  • Применение химии в строительстве
  • Применение хвойных пород древесины в строительстве