- Электрические машины
- Области применения электрических машин
- Основополагающие законы электромеханического преобразования энергии в индуктивных машинах
- Закон Ампера
- Закон электромагнитной индукции Фарадея
- Вращающиеся электрические машины
- Виды вращающихся электрических машин
- По характеру магнитного поля в основном воздушном зазоре
- Применение электрических машин в строительстве
- Применение электрических машин
Электрические машины
В качестве энергоносителя в электрической машине может быть использовано как магнитное, так и электрическое поле. Машины, в которых для преобразования энергии используется магнитное поле, называются индуктивными, а те, в которых используется электрическое поле, — емкостными. Возможно также совместное использование магнитного и электрического полей. Такие машины называются индуктивно-емкостными.
На практике наибольшее распространение получили индуктивные машины.
Принято различать электромеханические преобразователи в зависимости от цели преобразования энергии на:
Области применения электрических машин
Рисунок 1 – Области распространения электрических машин
Для управления современными электрическими машинами используются сложные электронные системы, которые конструктивно объединяются с электромеханическим преобразователем и образуют так называемую электромеханотронную систему, выступающую как единый технический комплекс. Все это существенно расширяет функциональные возможности электрических машин и обеспечивает их широкое внедрение во все сферы производственной и бытовой деятельности человечества [1].
Основополагающие законы электромеханического преобразования энергии в индуктивных машинах
Закон Ампера
Согласно закону, установленному Ампером, на проводник с током в магнитном поле действует сила
Направление этой силы определяется по правилу «левой руки».
Закон электромагнитной индукции Фарадея
Всякое изменение магнитного поля во времени возбуждает в окружающем пространстве электрическое поле. Циркуляция вектора напряженности E этого поля по любому неподвижному замкнутому контуру s определяется выражением [3] [4]
,
Электродвижущая сила индукции возникающая в замкнутом контуре, равна скорости изменения во времени потока магнитной индукции
,
Знак «-» показывает, что индукционный ток, возникающий в замкнутом проводящем контуре имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.
Вращающиеся электрические машины
Виды вращающихся электрических машин
По характеру магнитного поля в основном воздушном зазоре
Применение электрических машин в строительстве
Электрическая ручная машина представляет собой электро-, вибро- и шумобезопасный переносной агрегат, состоящий из корпуса, встроенных в корпус электропривода, передаточного механизма, рабочего органа, пусковой и регулирующей аппаратуры.
Все ручные электрические машины по степени защиты оператора от поражения электрическим током подразделяют на три класса.
К классу I относят машины на номинальное напряжение тока свыше 42 В, у которых хотя бы одна металлическая деталь, доступная для прикосновения, отделена от частей, находящихся под напряжением, только одной рабочей функциональной изоляцией. На строительно-монтажных работах ручные машины класса I не применяются.
Рекламные предложения на основе ваших интересов:
К классу II относят ручные машины на номинальное напряжение свыше 42 В, у которых все металлические детали, доступные для прикосновения, отделены от частей, находящихся под напряжением, двойной или усиленной изоляцией. Выпуск машин класса II составляет более 70% от общего объема, производства электрических ручных машин в нашей стране.
К классу III относят ручные машины, работающие при низком, безопасном для человека напряжении до 42 В, получающие питание от автономного источника тока или от общей сети через преобразователь тока или трансформатор. Эксплуатация машин II и III классов возможна без применения средств индивидуальной защиты.
К настоящему времени созданы полностью электробезопасные ручные машины, снабженные не только двойной, но и так называемой полной электрической изоляцией. Такие машины имеют цельно-пластмассовый корпус и не содержат, кроме рабочего органа, наружных металлических частей.
По типу привода различают: – электромеханические ручные машины — с двигателем вращательного действия, движение которого сообщается рабочему органу (инструменту) через передаточное устройство (редуктор, кривошип-но-шатунный механизм и др.); – компрессионно-вакуумные машины, у которых передача энергии на рабочий орган осуществляется ударником, пневматически связанным с промежуточным преобразовательным механизмом; – электромагнитные — с линейным электромагнитным двигателем возвратно-поступательного (ударного) действия, сообщающим движение рабочему инструменту непосредственно.
В качестве привода электрических ручных машин применяют однофазные коллекторные двигатели типа КН II класса защиты полезной мощностью 120…850 Вт, одно- и трехфазные асинхронные электродвигатели с короткозамкнутым ротором полезной мощностью 120…750 Вт с питанием от сети нормальной (50 Гц) и повышенной (200 Гц) частот.
Машины с электродвигателями типа КН получили преимущественное распространение в строительстве благодаря легкости, портативности, мобильности и возможности непосредственного подключения к сети однофазного и трехфазного тока нормальной частоты. Осваивается производство ручных электрических машин на базе облегченных высокоскоростных коллекторных однофазных двигателей с номинальной частотой вращения 250…333,3 с-1.
В последнее время получают развитие ручные машины на базе коллекторных электродвигателей постоянного тока с источником питания от малогабаритных аккумуляторных батарей, встроенных в корпус или рукоять машины. В приводах ручных машин с коллекторными двигателями все шире применяется электронное регулирование частоты вращения вала ротора, что позволяет увеличить их производительность за счет оптимального режима работы.
Трехфазные асинхронные электродвигатели с короткозамкнутым ротором имеют более простую, надежную конструкцию (коллектор и щетки отсутствуют) и работают на токе нормальной частоты — 50 Гц (двигатели типа АН) и повышенной частоты — 200 Гц (двигатели типа АП). Электродвигатели типа АН, имеющие большие габариты и массу, низкую удельную мощность и КПД, применяют в ручных машинах с тяжелым режимом работы. Электродвигатели типа АП по сравнению с двигателями АН имеют более высокие энергетические характеристики; они портативны, быстроходны (частота вращения ротора до 300 с-1), характеризуются высокой мощностью на единицу массы, надежны в эксплуатации и долговечны. Эти двигатели III класса защиты на напряжение 42 В применяются в ручных машинах, работающих в опасных условиях в отношении поражения оператора электрическим током.
Ручные машины с трехфазными асинхронными электродвигателями подключаются к сети переменного тока нормальной частоты (50 Гц) напряжением 220/380 В через промежуточные агрегаты: с двигателями типа АН — через понижающий трансформатор, с двигателями типа АП — через преобразователь частоты, который выполняет также функции понижающего трансформатора.
Машины с двигателями типа АП, требующие применения преобразователя частоты, наиболее эффективно используются в стационарных условиях на стабильных рабочих местах.
В производстве электрических ручных машин применяется широкая унификация узлов и деталей, которые при выходе из строя могут быть легко заменены.
На монтажных и слесарно-сборочных работах широко распространены машины с вращательным движением рабочего органа: сверлильные, резьбонарезные, развальцовочные, шуруповерты, гайковерты, шлифовальные.
Применение электрических машин
Аннотация
Настоящая работа посвящена изучению машин постоянного тока. В работе рассмотрены области применения электрических машин, их технические характеристики и размеры. На примере двигателя постоянного тока независимого возбуждения (ДПТНВ) разработали систему электропривода с управлением по скорости.
Курсовая работа состоит из введения, 4 глав, заключения. Работа изложена на страницах напечатанного текста. Содержит 3 таблицы, 9 иллюстраций. Список использованных источников включает 5 наименований.
Задание и исходные данные
В курсовой работе требуется:
1. Рассчитать и вычертить эскиз магнитной цепи (МЦ) машины постоянного тока (МПТ) для одной пары полюсов.
2. Выполнить проверочный расчет магнитной цепи при холостом ходе, построить кривую намагничивания Фd(Ff), определить коэффициент насыщения магнитной цепи.
3. Рассчитать и вычертить схему–развертку обмотки якоря и схему ее параллельных ветвей, для чего необходимо:
– определить параметры обмотки – число секций, число витков в секции, шаги Y1, Y, Y2;
– составить таблицу обмотки;
– вычертить схему–развертку обмотки, нанести на нее контуры главных и дополнительных полюсов.
– вычертить схему параллельных ветвей обмотки якоря, указав номера секций.
4. На примере двигателя постоянного тока независимого возбуждения (ДПТНВ) разработать систему электропривода с управлением по скорости.
5. Выбрать П или ПИ закон регулирования.
6. Составить структурную схему замкнутого управляемого электропривода на базе ДПТНВ.
Исходные данные:
Диаметр якоря Da, мм | Активная длина якоря lа, мм | Число пар полюсов р | Расчетный коэффициент полюсной дуги аd | Отношение t1/bz3 | Воздушный зазор d, мм | Высота паза hz,мм | Высота главного полюса hm, мм | Коэффициент магнитного рассеяния s | Тип обмотки | Число пазов якоря Z | Напряжение питания U,В | Угловая скорость n,об/мин |
0,68 | 2,6 | 4,7 | 1,25 | петл |
Режим работы : двигательный.
Содержание
1 Применение электрических машин ……………………………………..
2 Расчет магнитной цепи машины постоянного тока…………………….
2.1 Расчет размеров зубцовой зоны……………………………………….
2.2 Расчет размеров воздушного зазора под главным полюсом………..
2.3 Расчет размеров сердечника главного полюса………………………
2.4 Расчет размеров спинки якоря………………………………………..
3 Якорные обмотки машин постоянного тока…………………………..
4 Электропривод постоянного тока………………………………………
Введение
Электрические машины — это электромеханические преобразователи, в которых осуществляется преобразование электрической энергии в механическую или механической в электрическую. Основное отличие электрических машин от других преобразователей в том, что они обратимы, т. е. одна и та же машина может работать в режиме двигателя, преобразуя электрическую энергию в механическую, и в режиме генератора, преобразуя механическую энергию в электрическую.
В зависимости от рода потребляемого или отдаваемого в сеть тока электрические машины подразделяются на машины переменного и постоянного тока. Машины переменного тока делятся на синхронные, асинхронные и коллекторные.
Большинство машин постоянного тока — это коллекторные машины. Они выпускаются мощностью от долей ватта до нескольких тысяч киловатт. Обмотки возбуждения машин постоянного тока располагаются на главных полюсах, закрепленных на станине. Выводы секций обмотки ротора (якоря) впаяны в пластины коллектора. Коллектор, вращающийся на одном валу с якорем, и неподвижный щеточный аппарат служат для преобразования постоянного тока сети в переменный ток якоря (в двигателях) или переменного многофазного тока якоря в постоянный ток сети (в генераторах постоянного тока).
Конструкция машин постоянного тока более сложная, стоимость выше и эксплуатация более дорогая, чем асинхронных, поэтому двигатели постоянного тока применяются в приводах, требующих широкого и плавного регулирования частоты вращения, или в автономных установках при питании двигателей от аккумуляторных батарей.
Применение электрических машин
Электрические машины широко применяют на электрических станциях, в промышленности, на транспорте, в авиации, в системах автоматического управления и регулирования, и в быту.
В настоящее время преимущественное распространение имеют сети переменного тока, поэтому в промышленности находят применение главным образом машины переменного тока. Вместе с тем широко используются и машины постоянного тока, несмотря на то, что стоимость их выше, чем машин переменного тока. Это объясняется тем, что они обладают лучшими эксплуатационными характеристиками в отношении регулирования частоты вращения, пуска, реверса и допускают более высокие перегрузки по сравнению с машинами переменного тока.
Широкое применение машин постоянного тока требует большого разнообразия их номинальных данных (мощности, частоты вращения, напряжения) и различных конструктивных исполнений соответственно условиям их установки и эксплуатации.
В настоящее время машины постоянного тока изготовляются на мощности от долей ватт до 12 МВт. Номинальное напряжение их не превышает 1500 В и только иногда для крупных машин доходит до 3000 В. Частота вращения машин колеблется в широких пределах — от нескольких оборотов до нескольких тысяч оборотов в минуту. Наиболее широкое применение нашли машины постоянного тока с механическим коммутатором — коллектором. Коллектор осложняет условия работы машины, но опыт эксплуатации в самых тяжелых условиях работы показал, что правильно спроектированная и качественно изготовленная машина постоянного тока является не менее надежной, чем более простые по конструкции машины переменного тока.
Электродвигатели широко применяют на транспорте в качестве тяговых двигателей, приводящих во вращение колесные пары электровозов, электропоездов, троллейбусов и др. К электрическим вспомогательным машинам относятся электродвигатели компрессоров, вентиляторов, насосов; генераторы служебного тока, в частности тока управления; делители напряжения; возбудители и тахогенераторы на тепловозах.
Обычно вспомогательные машины, механизмы, а в ряде случаев аппараты приводятся во вращение электродвигателями, органически входящими в общую структуру агрегата, например, в исполнении некоторых типов компрессоров, вентиляторов, насосов. Естественно, что в зависимости от способа сопряжения двигателей с механизмами или электрическими генераторами в ряде случаев они должны иметь специальное конструктивное исполнение. Магнитные системы двигателей постоянного и переменного тока выполняются с повышенным воздушным зазором и ненасыщенными для облегчения пуска механизмов.
За последнее время значительно возросло применение электрических машин малой мощности – микромашин мощностью от долей до нескольких сотен ватт. Такие электрические машины используют в устройствах автоматики и вычислительной техники. так называемых микромашин, широко применяемых во многих устройствах автоматики, телемеханики, связи, промышленной электроники, счетно-решающей и измерительной техники. В новых бурно развивающихся отраслях техники электрические микромашины выполняют весьма важные функции, обеспечивая быстродействующий привод различных исполнительных механизмов, преобразование рода тока, величины напряжения, частоты, числа фаз и других электрических параметров, усиление электрических сигналов малой мощности, преобразование угловых перемещений в электрические сигналы, согласование вращения нескольких осей и др. Кроме того, электрические микромашины являются важными элементами различных электробытовых приборов (холодильников, стиральных машин, пылесосов, полотеров, швейных машин, магнитофонов, электробритв и пр.), выпускаемых отечественной промышленностью в больших количествах для удовлетворения повседневных нужд людей.
В условиях научно-технической революции большое значение приобретают работы, связанные с повышением качества выпускаемых электрических машин. Решение этой задачи является важным средством развития международного экономического сотрудничества. Соответствующие научные учреждения и промышленные предприятия нашей страны ведут работы по созданию новых видов электрических машин, удовлетворяющих современным требованиям к качеству и технико-экономическим показателям выпускаемой продукции.