Применение дисперсных систем в строительстве

Понятие о строительных дисперсных системах. Классификация

Дисперсные системы– образования из двух и большего числа фаз (тел), одна из которых дисперсная фаза (ДФ) раздроблена и распределена в виде агрегатов молекул, частиц вещества, кристаллов, капель, пузырьков в другой дисперсионной среде (ДС)

Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества и дисперсионной среды. Поскольку дисперсионная фаза находится в системе в виде отдельных сверхмалых частиц, системы называют микрогетерогенными, а коллоидно-дисперсные системы – ультрамикрогетерогенными. Границу раздела фаз в таких системах невозможно обнаружить с помощью обычного оптического микроскопа.

Процессы, явления, происходящие в дисперсных системах, имеют место на тех или иных технологических этапах изготовления материалов и могут проявляться в разные периоды их эксплуатации. Поэтому эти процессы надо знать, понимать и уметь ими управлять.

Дисперсные системы классифицируют по дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур в дисперсных системах.

Количественной характеристикой дисперсности вещества является степень раздробленности (дисперсности – Д) – величина, обратная размеру частиц

,

По степени дробления (дисперсности) вещества системы делят на молекулярно-дисперсные (истинные растворы), коллоидно-дисперсные (коллоидные растворы) и грубодисперсные(взвеси, суспензии, эмульсии)

Для коллоидных и грубодисперсных систем характерны два основных признака: гетерогенность (неоднородность) и раздробленность дисперсной фазы. Гетерогенность в коллоидных и грубодисперсных системах характеризуется наличием поверхности раздела между частицами дисперсной фазы и дисперсионной среды.

Дисперсные системы могут быть свободнодисперсными (рис. 3.4) и связнодисперсными (рис. 3.5) в зависимости от наличия или отсутствия взаимодействия между частицами дисперсной фазы.

К свободнодисперсным системам относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы – твердообразны; они возникают при контакте частиц дисперсной фазы, приводящем к образованию структуры в виде каркаса или сетки. Такая структура ограничивает текучесть дисперсной системы и придает ей способность сохранять форму. Подобные структурированные коллоидные системы называют гелями. Игловатая, волокнообразная и ленточно-лепестковая формы дисперсных частиц повышают вероятность контактов между ними и способствуют образованию гелей при малой концентрации дисперсной фазы. На гелеобразование влияют концентрация дисперсной фазы, уменьшение размеров частиц, форма частиц, присутствие третьей фазы.

По химическому составу молекулярно-дисперсные системы могут быть органическими, минеральными, а по агрегатному состоянию –

газообразными (газовыми), жидкими и твердыми.

Источник

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ И ДИСПЕРСНЫХ СИСТЕМ

Планета Земля, её атмосфера, гидросфера, литосфера, биосфера – гигантские по своим масштабам дисперсные системы. Растения, животные (включая человека), микробы – сложнейшие коллоидные системы. Строительные материалы, медицинские препараты, продукты питания в значительной степени представлены дисперсными системами.

В технологических процессах используют поверхностные явления и дисперсные системы: катализаторы, адсорбенты, эмульсии и суспензии в полимеризации. Промышленное производство муки, крахмала, паст, кремов, мыла, стирального порошка, лекарственных препаратов и других дисперсных материалов осуществляется в громадных масштабах.

Широко используются коагуляционные структуры. К ним относятся гели – структурированные твердообразные дисперсные системы, в каркасе которых содержится жидкая дисперсионная среда. Высушенный гель, из которого удалена дисперсионная среда, переходит в состояние ксерогеля. Уголь, торф, картон, древесина, бумага, ткани, кожа, глина и многие другие материалы относятся к гелям или ксерогелям.

Конденсационно-кристаллизационные структуры образуются в результате химического взаимодействия частиц дисперсной фазы. Твердение воздушных и гидравлических вяжущих веществ завершается кристаллизационным структурообразованием. Например, смешение порошка строительного гипса с водой вызывает формирование на воздухе гидратированной ионной кристаллической структуры CaSO4×2H2O(т) в результате реакции:

Кристаллическая структура бетона формируется при замешивании цемента с песком и водой.

Ниже будут рассмотрены микрогетерогенные дисперсные системы: аэрозоли, порошки, суспензии, эмульсии, пены, сплавы и композиционные материалы, свойства которых широко используются в практической деятельности человека.

Получение дисперсных систем

Природные дисперсные системы, такие, как пыль, дым, туман, донный ил, мутная вода, снег, кварцевый песок, образуются в результате испарения, трения, конденсации и других физико-химических процессов, происходящих на планете.

Искусственные дисперсные системы получают двумя путями: диспергационным методом – измельчением твердых и жидких тел в дисперсионной среде и конденсационным методом – образованием в гомогенной среде новой фазы.

Диспергационные методы

Диспергационные методы – способы дробления вещества для получения высоко-, средне- и грубодисперсных систем. Они включают механическое, ультразвуковое и электрическое дробление. Механическое диспергирование осуществляется в дробилках и мельницах путем истирания, удара, дробления или комбинации этих действий (рис. 39, а). Ультразвуковое диспергирование происходит при воздействии ультразвуковых колебаний на смесь нерастворимых друг в друге жидкостей или смеси твердого тела с жидкостью. При прохождении ультразвуковой волны в смеси веществ возникают местные, быстро чередующиеся сжатия и расширения, вызываюшие разрушение частиц вещества.

Электрическое диспергирование позволяет получать высокодисперсные системы (золи). Для получения золей металлов к металлическим электродам, опущенным в воду, подводят постоянный электрический ток, сближают электроды до образования электрической дуги. Так получают, например, золь золота (рис. 39, б).

Рис. 39. Схемы диспергаторов: а) механическое диспергирование; б) электрическое диспергирование

Конденсационные методы

Объединение молекул или ионов в частицы дисперсной фазы и превращение гомогенной в гетерогенную систему происходит в результате физической или химической конденсации. При физической конденсации в газе частицы дисперсной фазы формируются в результате понижения температуры. Так происходит образование частиц твердого углекислого газа при работе углекислотного огнетушителя. Газ, выбрасываемый через форсунку огнетушителя, мгновенно расширяется и охлаждается в воздухе до температур ниже –78 о С (адиабатический процесс), превращаясь в аэрозоль.

В случае химической конденсации для получения дисперсных систем используют разнообразные химические реакции, в которых образуются нерастворимые в жидкости частицы (например, частицы AgI) или взвешенные частицы (NH4Cl) в газе:

Аэрозоли

Появление тумана (Ж/Г), дыма, пыли (Т/Г) свидетельствуют о том, что атмосфера насыщена аэрозолями. Смена времен года сопровождается выпадением дождя или снега, которые представляют собой дисперсную фазу. Выхлопные газы авто- и авиатранспорта, тепловых электростанций выбрасываются в воздух в виде аэрозолей.

Защита атмосферного воздуха от выбросов аэрозолей промышленных предприятий осуществляется главным образом с помощью центробежных отделителей (циклонов) или электрофильтров (рис. 40, а,б).

Рис. 40. Системы улавливания пыли: а) в циклоне; б) в электрофильтре; 1, 2 – входной и выходной патрубки; 3 – пылевой бункер: 4 – корпус

При очистке газа с помощью циклона (рис. 40, а), насыщенный пылью газ поступает по входному патрубку (1) в корпус циклона (4) и движется со все возрастающей скоростью от периферии к центру. Частицы пыли под действием центробежной силы отбрасываются к стенке и падают в бункер (3), а чистый воздух по внутренней восходящей спирали выходит наружу через выходной патрубок (2).

Улавливание пыли с помощью электрофильтра (рис. 40, б) осуществляется следующим образом. Дым пропускают между электродами с высокой разностью потенциалов, обеспечивающих при коронном разряде большой поток электронов от катода к аноду. Ионизация молекул газа сопровождается адсорбцией отрицательно заряженных ионов на частицах пыли. Частицы осаждаются на аноде и, потеряв заряд, оседают в бункере.

Аэрозоли широко применяются в быту в виде баллончиков, содержащих готовые к распылению лаки и краски, а также пены для бритья, дезодоранты, духи, одеколоны, туалетную воду. В медицине используются ингаляторы для распыления капель лекарства в период приступа удушья у астматиков, а также при заболеваниях носа и горла.

Для пожаротушения используют аэрозольные баллоны, содержащие порошок или углекислый газ. При работе названных устройств аэрозоль образуется в момент применения порошкового или углекислотного огнетушителя.

Порошки

Порошки –средне- и грубодисперсные системы с высокой концентрацией твердой дисперсной фазы в газе (Т/Г). К порошкам относятся песчаные карьеры, грунтовые дороги, сугробы снега, все сыпучие материалы (табл. 3).

Источник

Дисперсные материалы и их использование в технологиях

Дисперсные системы, их строение, классификация и свойства, а также их применение в технологических процессах. Виды и свойства некоторых дисперсных материалов: твердых гетерогенных систем (карбон), газовых пен (пенопласт) и порошков (полипропилен).

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 22.02.2012
Размер файла 88,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУ ВПО «Воронежский государственный технический университет»

по дисциплине «Теоретические основы прогрессивных технологий»

Тема «Дисперсные материалы и их использование в технологиях»

Выполнил студент гр. ЭК-093 И.Н. Карзанов

Руководитель: И.Б. Корчагин

1. Общие сведения о дисперсных системах

2. Виды и свойства некоторых дисперсных материалов

В ряду объектов физической химии дисперсные системы занимают чрезвычайно важное место в связи с их широчайшим распространением и разнообразным применением, исключительной ролью в природных явлениях и процессах, в повседневной техногенной деятельности человека и вместе с тем в связи с весьма специфическими физико-химическими свойствами.

К числу дисперсных систем относятся столь резко различающиеся по химическому и фазовому составам, физическим свойствам, областям существования и применения объекты, как аэрозоли (туманы, дымы, космическая пыль), золи металлов и природных минералов, донные отложения рек, морей и океанов, грунты и почвы, мелкие пески, сырая нефть и природные битумы, пигменты и высокодисперсные наполнители для лакокрасочных и композиционных материалов, керамические массы, цементы и бетонные смеси на их основе, мука и мучное тесто, водоугольные суспензии и золы от сжигания твердых топлив, водные суспензии целлюлозных волокон для производства бумаги, катализаторные массы, сырьевые шламы многих химических производств. К дисперсным системам относятся также все многообразные виды пен и эмульсий. Этот перечень можно продолжать, что указывает на важное значение дисперсных систем как в природных явлениях, так и при проведении разнообразных технологических процессов, осуществляемых с их участием. К этому нужно добавить, что многие виды дисперсных систем служат стартовой основой для получения дисперсных материалов, таких, как бетоны, лакокрасочные материалы, высоконаполненные резины и пластики, гетерогенные твердые ракетные топлива, керамические и металлокерамические материалы, бумага и картон, искусственные кожи и множество других материалов.

Что же объединяет все это разнообразие резко различающихся между собой по свойствам, области существования и применения дисперсных систем и материалов, какова общая физико-химическая основа для их изучения, описания и регулирования свойств? В известной степени ответы на эти вопросы содержатся в самом определении понятия «дисперсные системы». Общие для всех дисперсных систем фундаментальные физико-химические признаки: гетерогенность, то есть наличие поверхности раздела между фазами, и дисперсность (раздробленность). Роль этих факторов в проявлении разнообразных свойств дисперсных систем и прежде всего их агрегативной и седиментационной устойчивостей становится более существенной по мере увеличения дисперсности и соответствующего уменьшения размера частиц и их концентрации в жидкой и газовой дисперсионных средах. Соответственно увеличивается и свободная (избыточная) межфазная энергия, а эта энергия, как следует из принципа Гиббса-Гельмгольца, в дисперсных системах стремится самопроизвольно уменьшиться.

Актуальность темы «Дисперсные системы и их применение в технологиях» можно объяснить необходимостью оптимизации процессов создания новых материалов, основанных на применении дисперсных систем.

Целью данной работы является изучение теоретических сведений о дисперсных системах, их строении, классификации и свойствах, а также об их применении в технологических процессах. В качестве примера рассматриваются твердые гетерогенные системы (карбон), газовые пены (пенопласт) и порошки (полипропилен)

1. Общие сведения о дисперсных системах

дисперсный материал карбон пенопласт полипропилен

При растворении в воде кристаллов сахара и хлорида натрия образуются соответственно молекулярные и ионные растворы. Таким образом, одно и то же вещество может находиться в различной степени раздробленности: микроскопически видимые частицы (>0,2-0,1 мм, разрешающая способность глаза), микроскопически видимые частицы (от 0,2-0,1 мм до 400-300 нм, разрешающая способность микроскопа при освещении белым светом) и отдельные молекулы (или ионы). Постепенно складывались представления о том, что между миром молекул и микроскопически видимых частиц находится область раздробленности вещества с комплексом новых свойств, присущих этой форме организации вещества.

Поскольку дисперсная (прерывная) фаза находится в виде отдельных небольших частиц, то дисперсные системы, в отличие от гетерогенных со сплошными фазами, называют микрогетерогенными, а коллоиднодисперсные системы называют также ультрамикрогетерогенными, чтобы подчеркнуть, что в этих системах граница раздела фаз не может быть обнаружена в световом микроскопе.

Когда вещество находится в окружающей среде в виде молекул или ионов, то такие растворы называют истинными, т.е. гомогенными однофазными растворами.

Обязательным условием получения дисперсных систем является нерастворимость диспергируемого вещества и дисперсионной среды. Напри мер, нельзя получить коллоидные растворы сахара или хлорида натрия в воде, но они могут быть получены в керосине или бензоле, в которых эти вещества практически нерастворимы.

Дисперсные системы классифицируют по дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур в дисперсных системах.

Здесь a равно диаметру сферических или волокнистых частиц, либо длине ребра кубических частиц, либо толщине пленок

Степень дисперсности численно равна числу частиц, которые можно плотно уложить в ряд (или стопку пленок) на протяжении одного сантиметра. В табл. 1 приведены условно принятые границы размеров частиц систем с различной раздробленностью вещества.

Таблица 1. Классификация корпускулярно-дисперсных систем по степени дисперсности

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Применение диоксид титана в строительстве
  • Применение диатомита в строительстве
  • Применение дегтя в строительстве
  • Применение двутавра в строительстве
  • Применение гудрона в строительстве