Обратная засечка в строительстве

Обратная угловая засечка в геодезических измерениях

Засечкой называют относительно простой метод вычисления координат некоторой точки посредством измерения на ней углов и расстояний по направлению на уже закрепленные на местности контуры.

К ней достаточно часто прибегают в различных геологических, строительных и инженерных работах за счет ее простоты и экономичности. На практике обратная засечка чаще всего используются для вычисления координат пунктов геодезической сети, выноса в натуру проектных точек и т.д.

Опытный геодезист сможет без труда провести нужные измерения при помощи теодолита, тахеометра или любого другого прибора всего за пару минут.

Виды засечек

В зависимости от местности и способов построения сетей сгущения в геодезии существует два основных вида привязки к опорным пунктам:

  1. Непосредственная. Подразумевает привязку теодолитного или полигонометрического хода к триангуляционным пунктам высшего класса с возможностью выполнить измерения примычных углов. Используется в тех случаях, когда на опорных точках можно выполнить те же измерения, что и на соседних.
  2. Косвенная. Проводится только при отсутствии возможности провести непосредственные измерения примычных длин и углов. К этому виду привязки и относится засечка.

По способу же построения геодезическая засечка бывает:

  • линейной (полярные и биполярные по числу пунктов);
  • угловой (прямая и обратная);
  • комбинированной (положение точки определяют по известным углам и линейным расстояниям).

В геодезии чаще всего прибегают к комбинированию прямой и обратной засечек. Кроме того, чтобы полученные результаты были наиболее достоверными, измеряют больше величин, чем нужно, а само местоположение искомых пунктов получают посредством уравнивания.

Однократная и многократная засечка

Если для определения координат берется только один исходный пункт, то такая засечка будет называться однократной, а если более трех – многократной.

В основе обратной однократной угловой засечки лежит так называемая задача Потенота, которая была названа в честь французского математика Лорана Потенота, удачно решившего ее еще в 1692 году. Ученый предложил по известным значениям трех близлежащих точек вычислять координаты искомой.

На сегодняшний день существует уже более ста вариаций ее решения, которые были предложены многими именитыми учеными, но в геодезической практике наибольшую популярность получили формулы Жана Деламбра, Кнейссля и Гаусса.

Рисунок 1. Обратная многократная засечка

Важно отметить, что достоверные данные удается получить только в тех случаях, когда искомая точка находится в пределах треугольника, который образовали исходные пункты или же вне его, но напротив одной из его вершин.

Если же искомая точка попадает в пределы окружности, проходящей через эти точки, она становится неопределяемой. Этот ключевой недостаток в задаче Потенота, именуемый опасным кругом, приводит к необходимости определения дополнительной точки.

Обратная многократная угловая засечка как раз и подразумевает определение местоположения пункта через измерения на этом самом пункте углов или направлений как минимум на четыре твердых пункта, чьи координаты установлены. Этот метод более трудоемкий, но гарантирует надежный контроль результатов измерений. При обработке данных используют метод Гаусса-Ньютона, который в геодезии также называют параметрическим.

Способ Деламбра

Решение обратной засечки при помощи этого способа выполняется в такой последовательности:

    Вычисляется дирекционный угол исходного направления с отметки 1 на точку «0» по формуле обратной геодезической засечки:

Значения дирекционных углов с исходных отметок Т2, Т3, Т4 получают из формул:

  • Находят координаты точки Р с помощью формул тангенсов или котангенсов дирекционных углов направлений.
  • Способ Кнейссля

    Аналогично способу Деламбра последовательность формул при решении задачи обратной геодезической засечки по Кнейсслю будет иметь следующий вид:

      Определяются вспомогательные коэффициенты:

    Вычисляется котангенс дирекционного угла исходного направления на заданный пункт:

    Приращения координаты точки Р относительно исходного пункта 1 находят при помощи нижеприведенных формул:

    \(\Delta x_<1-p>=c\cdot \Delta y_<1-p>\)

    Определяются координаты точки Р:

    \(y_

    =y_<1>+\Delta y_<1-p>\)

    Средняя квадратическая погрешность вычисления местоположения пункта Р по трем направлениям вычисляется при помощи выражения:

    Оценивается точность обратной угловой засечки по способу Кнейссля с определением погрешности:

    Допустимость в расхождениях полученных значений двух вариантов решений выполняется по формуле:

    Если данное условие соблюдено, то итоговое значение координат берется как среднее арифметическое значение из результатов двух решений.

    Уравнивание при помощи параметрического способа

    Под определение обратной многократной угловой засечки попадает как совокупность простых однократных измерений, так и просто большое количество избыточных. Однако в обоих случаях необходимо уравнивание, которое выполняется по измеренным углам и направлениям.

    К примеру, неизвестные \(x_

    \) и \(y_

    \) – координаты точки Р, которые в данном способе будут представлены в качестве параметров. Для этого их представляют в виде приближенных значений \(x_<0>\), \(y_<0>\) и поправок к ним \(δх\) и \(δу\).

    В приведенном уравнении \(x_<0>\) и \(y_<0>\) – результаты обработки однократных засечек, а \(δх\) и \(δу\) получают через уравнивание методом наименьших квадратов параметрическим способом с применением дифференциальных формул.

    Этот метод подразумевает применение не только параметрического, но и коррелатного способа. Они дают одинаковые результаты, но отличаются по объему вычислений.

    Однако в геодезической практике целесообразнее применять параметрический способ, поскольку при любом количестве избыточных измерений число нормальных уравнений будет аналогично числу неизвестных. При этом каждое неизвестное будет представлено в виде суммы приближенного значения и его поправки.

    Сферы применения

    Обратная угловая засечка нашла широкое применение в строительстве высотных зданий и сооружений, вроде опорных конструкций для мостов и дымовых труб. Кроем того, она позволяет быстро построить строительную сетку или определить местоположение точки в пространстве. В геодезии ее нередко используют в трилатерации и триангуляции.

    Нельзя также не упомянуть ее огромного практического значения в навигации и военном деле. В частности, засечка по обратным дирекционным углам используется для топографогеодезической подготовки командно-наблюдательного пункта и позиции ведения огня.

    Источник

    Обратная геодезическая засечка

    Экономим ваши деньги.
    Постоянным клиентам — скидки.

    Качественное исполнение
    и грамотное оформление.

    Мы очень внимательно относимся
    к каждому клиенту.

    Важнейшая задача геодезиста при выполнении профильных работ на территории — определение точных координат объекта, его конструктивной части. Не всегда возможно это сделать при помощи современных навигационных систем (ГЛОНАСС, GPS). Причина — значительное удаление от исходных пунктов, неудобное расположение искомой точки. В этом случае решаются геодезические задачи, в которых вводится понятие прямая и обратная геодезические засечки. Кроме этих способов определения местоположения объекта существуют другие — полярные, биполярные.

    Что такое прямая и обратная геодезические засечки?

    Рассмотрим плоскость, с расположенными на ней тремя точками А, В, С. Координаты двух (А, В) известны, расстояние между ними измерено. Необходимо определить координаты третьей точки С (объект). Используя геодезические приборы, специалисты замеряют прилежащие к А и В углы (между отрезком АВ и векторами, направленными на С). Путем вычислений получают координаты точки С. Этот способ получил название прямая засечка.

    И прямая, и обратная геодезические засечки относятся к категории угловых засечек. Правильность выполненных расчетов обычно проверяется путем обратных вычислений для получения (сверки) известных значений.

    Обратная геодезическая засечка: особенности выполнения

    В ситуации, когда нет возможности измерить расстояния от привязываемой точки до исходных пунктов, применяется обратная геодезическая засечка. Прибор-дальномер, при помощи которого производятся измерения, находится в месте, подлежащем определению, в центре. Измеряются углы между векторами, направленными на исходные пункты, координаты которых есть (нумеруют по ходу часовой стрелки). Этот способ определения координат используется при обеспечении строительства. Выполняется обратная геодезическая засечка по не меньше, чем трем исходным пунктам (в теории). На практике расчеты выполняются по не меньше, чем четырем с использованием математических формул Юнга, Деламбера, Кнейселя.

    Наша компания «СГИ» выполняет геодезические работы любой сложности. Наши опытные инженеры-геодезисты, выполняя разбивку сети, топосъемку, выбирают оптимальный вариант с учетом поставленных задач, условий местности.

    Источник

    Применение электронных тахеометров в разбивочных работах

    При теоретической подготовке в высшей, технической школе многие геодезисты, маркшейдеры знакомились, изучали и использовали на практике классические методы проложения теодолитных ходов, угловых измерений с помощью теодолитов и линейных – стальными рулетками, нивелирования, получали навыки по высшей геодезии. Но почему-то не припоминается, может быть в связи со сроком давности, применение полученных знаний на практике в строительстве. Это особенная сфера в плане тех же геодезических измерений с разбивками и применением других способов, своей точностью и требованиями для возведения строительных конструкций, с использованием тех же инструментов (теодолитов, нивелиров, рулеток) осваивалась уже на производствах. Правильный инженерный подход, с соблюдением нужной точности работ, неизменные геодезические принципы, единые оптические приборы, строгие методы, разделение обязанностей при строительном производстве с линейными ИТР. Все это придает уверенности, надежности и основательности в том, что делают геодезисты на стройке.

    С началом массового применения цифровых технологий, появлением новой доступной измерительной электронной измерительной и вычислительной техники темп геодезических работ заметно увеличился. Как, впрочем, и ускорились темпы возведения строительных объектов.

    Новые электронные приборы

    Появились относительно недавно, двадцать – двадцать пять лет тому назад. И самым совершенным, и удобным для применения в строительстве стал электронный тахеометр. Этот прибор позволяет производить линейные измерения без рулеток с достаточно высокой точностью, что сразу повысило производительность и удобство проведения различных геодезических работ. Но особенно оценили такой прибор и его возможности инженеры геодезисты на стройке.

    При выноске (разбивке) проектных точек непосредственно на строительной площадке стало более удобно применять разные способы и их комбинации, которые предусмотрены отдельными опциями в электронных тахеометрах:

    • разного рода, а именно: линейные, угловые, створные, линейно-угловые засечки;
    • способ прямоугольных координат;
    • полярный метод;

    Каждый из них имеет свои условия и необходимость применения в конкретных случаях. Но для их выполнения, изначально, надо иметь геодезические пункты с точными координатами. Особую популярность для решения этой задачи приобрел способ обратной геодезической засечки (ОГЗ), дающий возможность определять координаты в любой точке стояния электронного прибора в пределах строительной площадки при правильно выполненной конфигурации пунктов геодезической основы. При наличии в электронном тахеометре безотражательного режима измерений на каком-то определенном, в фиксированных пределах, расстоянии имеется возможность закреплять и создавать на вертикальных поверхностях геодезическое разбивочное обоснование (ГРО). Кроме этого существуют специальные пленочные отражатели с самоклеящейся поверхностью, которые можно применять в качестве точек ГРО. И уже с применением режима визирования на пленку производить всевозможные измерения на разных высотах строящихся сооружений. Кстати для этого можно использовать уже выше перечисленные методы, например, хорошую точность дает линейно-угловая засечка.

    Обратная засечка и разбивки электронным тахеометром

    Применение обратной геодезической засечки заключается в определении неизвестных координат тех точек, над которыми устанавливается электронный тахеометр. Выбирая в его меню опцию выполнения обратной засечки, вводятся все координаты точек ГРО, участвующие в измерениях. Последовательно, как правило, по ходу часовой стрелки проводятся измерения на выбранные точки. И в конечном итоге вычисляются, высвечиваясь на цифровом дисплее результаты (координаты пункта) и точность их определения.

    Точность самой засечки и других способов разбивочных работ, например полярного метода, определяется по формуле:

    mxβ-среднеквадратические погрешности (СКП) точек стояния при исполнении ОГЗ или разбивочных работах в результате допущения при измерении углов;

    mxS — СКП точек разбивочной сети или стояния при выполнении ОГЗ вследствие получения погрешностей при измерении длин.

    Другими погрешностями такими, как центрирования и визирования, дающие значения 0,5-1,0 мм, можно пренебречь. Погрешность в результате измерения углов определяется формулой:

    где mβ— скп измерения горизонтальных углов, соответствует 3-5 секундам в зависимости от типа электронного тахеометра;

    S- длина до измеряемых точек разбивочной или внешней сети;

    ρ – число перехода угловой величины в линейные значения.

    Как правило, при соблюдении методик измерений и количества повторений, СКП угловых величин имеют малые значения.

    Погрешности линейных измерений в электронных тахеометрах соответствуют их техническим характеристикам и составляют значения:

    • 2-3 мм при измерении свето-дальномером на призму и в безотражательном режиме на коротких расстояниях до 500 метров;
    • 2+ 2ррм мм при измерении расстояний на группу призм до 5 км.

    Очевидно, что при разбивочных работах основную часть погрешности составляет линейные погрешности, которые при нескольких измерениях уменьшаются до значений менее 2 мм. А при обратной геодезической засечке основным источником погрешности, кроме этого еще являются ошибки координат пунктов ГРО.

    В любом случае при выполнении обратной геодезической засечки и разбивочных работ с применением электронных тахеометров ведущих производителей (Sokkia, Leica, Topcon, Trimble и др.) достигается необходимая точность работ с высокой их производительностью.

    Одновременно этими электронными приборами могут выполняться измерения и высотных координат с достаточной точностью, их передача на другие горизонты работ наклонным и даже вертикальным проектированием.

    В новейших тахеометрах существуют и много других функций в помощь геодезистам на стройках. Очевидно, что с применением таких уникальных геодезических приборов геодезисты расширили свои возможности при проведении геометрических измерений в строительстве.

    Источник

    Строим вместе с сайтом Rukami.top
    Не пропустите:
  • Обрамление в строительстве это
  • Образцы экспертных заключений по строительству
  • Образцы частных домов для строительства
  • Образцы форм актов в строительстве
  • Образцы удостоверений в строительстве