Энергосберегающие материалы и технологии в строительстве

Какие нужны энергосберегающие технологии при строительства пассивного дома

Принципы постройки пассивного дома:

– все ограждающие конструкции должны иметь эффективную теплоизоляцию, по сути превращающие дом в термос и исключающие мостики холода;

– форма сооружения компактна;

– ориентация здания на юг;

– наличие контролируемой вентиляции с рекуперацией тепла.

Как уже отмечалось, под системой контролируемой вентиляции с рекуперацией тепла понимают устройство теплообменника, в котором отводящийся теплый воздух нагревает подающийся свежий воздух и сбрасывается в атмосферу.

Технология строительства пассивного дома заключается в следующем:

– важно правильно выбрать участок для постройки: он должен быть открытым, хорошо освещённым, не находиться на возвышенности, т. к. иначе ветер будут сильно его выхолаживать, что приведёт к увеличению расходов на отопление;

– фундамент должен быть сплошным – цельная плита, уложенная на слой теплоизоляции. Фундамент закладывается ниже уровня промерзания грунта.

– по периметру фундамента с помощью опалубки делается монолитная бетонная изоляция цоколя;

– для строительства тёплых стен используются керамические поризованные блоки (рис. 4.10.), газобетонные блоки, термоблоки;

Рисунок 4.10. Керамические поризованные блоки

– конструкция стен: внешняя отделка – теплоизоляция – кладка – штукатурка. Все швы кладки должны быть герметичны;

– конструкция крыши также должна быть герметична и тщательно утеплена;

– стропильная система делается либо из металла, либо из сухого дерева, чтобы его не повело в процессе высушивания, что непременно приведет к щелям и сквознякам;

– для оконных конструкций применяются стеклопакеты (двух- или трёхкамерные), стёкла – теплоизолирующие с инертным газом между ними и низкоэмиссионным напылением, что обеспечивает коэффициент теплопередачи окон

– для снижения потери тепла через систему вентиляции применяется рекуперация тепла – до 75 %. Дополнительный свежий воздух подводится через грунтовой теплообменник (труба длинной до 35 м), расположенный на глубине 1,5 м, где он летом нагревается, а зимой охлаждается;

– для отопления дома и нагрева воды используются солнечные коллекторы, тепловые насосы и низкотемпературное отопление через «теплый пол» или радиаторы (рис. 4.11.).

Рисунок 4.11. Технологические особенности пассивного дома

Энергоэффективные дома дороже традиционных на 15-20 %, но экономия на эксплуатации позволяет окупить эти расходы за 7-10 лет.

Теплоизоляция

Проблема утепления жилища возникла, пожалуй, одновременно с зарождения самого искусства строительства. Известно, что уже в каменном веке первобытные люди строили землянки, потому что знали – покрыв дом сверху слоем рыхлой земли, можно сделать его теплее. Современная же строительная наука предлагает нам множество материалов, способных сделать жилище уютным и теплым, не потратив при этом лишних трудов и денег.

Одной из важнейших задач энергосбережения зданий является сохранение тепла в холодное время, которое в России может составлять большую часть года. Грамотная теплоизоляция стен, кровли и коммуникаций важна в плане энергосбережения, что приводит к большой экономии финансовых средств, затрачиваемых на содержание жилья.

Теплоизоляция частных жилых домов должна начинаться ещё на стадии строительства и быть комплексной – от фундамента и стен до крыши.

Наибольший эффект энергосбережения достигается благодаря применению современных минеральных и органических утеплителей. К ним относятся: минвата, базальтовые плиты, пенополиуретан, пенополистирол, стекловолокно и многие другие, имеющие различные коэффициенты теплопроводности, влияющие на толщину теплоизоляции.

Энергосберегающие кон­струкции должны быть, во-первых, прочными, жёсткими и воспринимать нагруз­ки, то есть быть несущей конструкцией, а во-вторых, должны защищать внутреннее пространство от дождя, жары, холода и других атмосферных воздействий, то есть обладать низкой теплопроводностью, быть водостой­кими и морозоустойчивыми.

В природе не существует материала, который удовлетворял бы всем этим требованиям. Для жестких конструкций идеальным материалом являются ме­талл, бетон или кирпич. Для теплоизоляции годится только эффективный утепли­тель, например, минеральная (каменная) вата. Поэтому для того, что бы ограждающей конст­рукция была прочной и теплой, используют композицию или комбинацию как минимум двух материалов – конструкционного и теплоизоляционного.

Композиционная ограждающая конструкция может быть представлена в виде нескольких отличных друг от друга систем:

1. Жесткий каркас с заполнением межкаркасного пространства эффективным утеплителем;

2. Жесткая ограждающая конструкция (например, кирпичная или бетон­ная стена), утеплённая со стороны внутреннего помещения – так называемое внутреннее утепление;

3. Две жесткие пластины и эффективный утеплитель между ними, напри­мер, «колодезная» кирпичная кладка, железобетонная панель «сэндвич» и т. д.;

4. Тонкая ограждающая конструкция (стена) с утеплителем с внешней стороны – так называемое внешнее утепление.

Применение той или иной системы ограждающей конструкции определяется конструктивными осо­бенностями модернизируемого здания и технико-экономическими расчета­ми, основанными на приведенных затратах.

Каждая из этих конструкций имеет свои достоинства и недостатки, и вы­бор её зависит от многих факторов, включая местные условия.

Наиболее эффективным представляется четвертый тип утепления здания (внешнее утепление), который наряду, естественно, с недостатками обладает рядом существенных достоинств, а именно:

— надежная защита от неблагоприятных внешних воздействий, суточных и сезонных температурных колебаний, которые ведут к неравномерной де­формации стен, вызывающей образование трещин, раскрытие швов, от­слоение штукатурки;

— невозможность образования на поверхности стены какой-либо поверхностной флоры из-за избытка влаги и льда, образовавшегося в толще стены, в результате конденсационной влаги, поступающей из внутренних помещений, и влаги, проникшей внутрь массива ограждающих кон­струкций из-за повреждения поверхностного защитного слоя;

— препятствование охлаждению массива ограждающей конструкции до температуры точки росы и, соответственно, образованию конденсата на внут­ренних поверхностях;

— снижение уровня шума в изолируемых помещениях;

— отсутствие зависимости температуры воздуха во внутренних помещениях от ориентации здания, то есть от нагрева солнечными лучами или ох­лаждения ветром.

Для устранения теплопотерь в старых зданиях разработа­ны и осуществляются различные проекты теплотехнической реконструкции и утепления, например, так называемая термо­шуба, представляющая собой многослойную конструкцию из различных материалов.

Утепление стен. Большая часть тепла теряется через стены дома. В среднем через каждый квадратный метр обычной стены за год может теряться 150-160 кВт тепловой энергии. Поэтому утепление наружных стен здания приводит к следующим, несомненно, положительным моментам: экономия времени и средств на обогрев помещений; дополнительное укрепление конструкции дома; увеличение вариантов оформления фасадов зданий за счёт применения различных материалов.

Сегодня уже никто не строит домов с толстыми стенами – к проблеме энергосбережения подходят по-другому.

Для начала необходимо разобраться, какую часть стены целесообразно утеплять – внутреннюю или наружную. Если утеплить внутреннюю поверхность стены, то под слоем утеплителя может выпасть конденсат, что приведет к образованию грибка, а скопившаяся в порах стены влага при замерзании будет постепенно разрушать стену, что впоследствии приведет к необходимости ремонта. Следовательно, утепление жилого дома целесообразно производить снаружи.

В качестве наружной теплоизоляции чаще всего используются следующие утеплители:

— керамзит, представляющий собой обожжённую глину, вспененную особым методом – достаточно дешёвый, доступный и долговечный утеплитель, используемый как заполнитель пустот и в виде засыпки;

— базальтовое волокно – отличается высокой механической прочностью, огнестойкостью и биологической устойчивостью;

— вспененный полиэтилен – очень эффективный и долговечный утеплитель, обладающий благодаря своей ячеистой структуре высокими тепло- и гидроизолирующими свойствами;

— пенополиуретан – неплавкая теплоизоляционная пластмасса, получаемая путём смешивания двух компонентов и отличающаяся высокой ценой и долговечностью.

Применяются различные способы наружного, или фасадного, утепления:

— система вентилируемого фасада.

Мокрый, или штукатурный, метод наиболее приемлем для владельцев загородного жилья.

Сухой метод представляет собой обшивку стен дома сайдингом или вагонкой.

Система вентилируемого фасада состоит из подоблицовочной конструкции, на которую крепится защитно-декоративное покрытие – алюминиевые панели, стальные компоненты облицовки, керамогранит и т.д. Утепление жилого дома с применением такой системы является самым дорогим, но при этом можно добиться ощутимой экономии на системах кондиционирования и отопления.

Утепление помещений изнутри имеет как положительные, так и отрицательные стороны. К плюсам относится то, что при этом не требуется изменять конструкцию здания, работать можно в любое время года и утеплят не все площади помещений, а только самые уязвимые места. Минусы – уменьшение полезной площади помещений и увеличение вероятности образования конденсата в холодное время года.

Одним из слабых мест в системе теплоизоляции дома можно назвать окна и входные двери. Грамотное утепление дверей способно уменьшить теплопотери помещения на 25-30 %. Выбор качественного утеплителя для входной двери является залогом успеха в борьбе за экономию энергоресурсов.

Наиболее доступными и дешёвыми являются поролоновые уплотнения, однако этот материал нельзя назвать оптимальным выбором..

В настоящее время широкое распространение получили профильные резиновые уплотнения на самоклеящейся основе, отличающиеся большей долговечностью и надежностью, что вполне подходит для входных дверей. Практически единственным способом утепления деревянной двери является её обивка. В качестве утеплителей в данном случае обычно применяются вата, поролон и изолон.

В качестве обивочного материала, в зависимости от вкуса и финансовых возможностей, применяется кожа, дермантин и различные типы кожзаменителей.

Утеплители для металлической входной двери также разнообразны. Стандартные металлические двери обычно поставляются без внутреннего утеплителя. В качестве внутренних утепляющих материалов обычно применяются минеральные утеплители и пенопласт.

Минеральные утеплители – пожаробезопасны, обеспечивает надежную тепло- и звукоизоляцию. Желательно применение материала с высокой плотностью.

Кроме стен и крыши (глава 4.8.5) для наилучшего энергосбережения здания необходимо утеплять коммуникационные системы здания. Систему снабжения холодной водой и канализацию надо защищать от замерзания, трубы с горячей водой – для уменьшения тепловых потерь. Современные теплоизоляционные материалы для трубпозволяют эффективно решить эту задачу.

Существует множество решений выполнения теплоизоляции, все они зависят от условий эксплуатации трубопровода.

Существуют и альтернативные способы снижения теплопотерь, за которыми, возможно, будущее:

— предизоляция. Заключается в обработке трубных заготовок пенополиуретаном в заводских условиях, на стадии производства. К потребителю труба поступает уже защищённой от возможных теплопотерь. При монтаже остаётся утеплить только стыки труб;

— краска, обладающая теплоизоляционными свойствами. Сравнительно недавняя разработка учёных. В её состав входят различные наполнители, придающие уникальные свойства. Даже тонкий слой такой краски способен обеспечить теплоизоляцию, которая достигается большим объемом пенопласта, минеральной ваты и другими материалами. Легко наносится на поверхность, позволяет обработать коммуникации даже в труднодоступных местах. Помимо всего прочего, обладает антикоррозийными свойствами.

Современные теплоизоляционные материалы применяются на различных трубопроводных линиях. Они способны работать как при высоких температурах, так и в крайне жестких условиях вечной мерзлоты.

Применение теплоизоляции позволяет достичь следующих результатов:

— снижение утечек тепловой энергии на линиях отопления и горячего водоснабжения;

— защита различных трубопроводов от перемерзания в условиях отрицательных температур;

— повышение срока эксплуатации сетей благодаря снижению агрессивного воздействия окружающей среды;

— в холодильных установках и системах кондиционирования значительное снижение затрат на поддержание требуемой температуры;

— снижение риска получения травм и ожогов от контактов с горячей или холодной поверхностью.

Применение качественной теплоизоляции трубопроводов позволяет повысить срок безаварийной работы коммуникаций и окупается в течение нескольких лет эксплуатации.

Пассивный дом должен иметь эффективную тепловую изоляцию. Фотография в инфракрасных лучах (рис. 4.12.) показывает, насколько эффективна теплоизоляция пассивного дома (справа) по сравнению с обычным домом (слева).

Ограждающие конструкции (стены, окна, крыши, пол) стандартных домов имеют довольно большой коэффициент теплопередачи. Это приводит к значительным потерям: например, тепловые потери обыкновенного кирпичного здания составляют 250-350 кВт·ч в год с 1 м 2 отапливаемой площади.

Технологическая концепция пассивного дома предусматривает эффективную теплоизоляцию всех ограждающих поверхностей – не только стен, но и пола, потолка, чердака, подвала и фундамента. В пассивном доме формируется несколько слоёв теплоизоляции – внутренняя и внешняя.

Как правило, для утепления стен и пола пассивного дома на грунте используется слой теплооизоляции с коэффициентом теплопроводности не более 0,04 Вт/(м∙К) толщиной 30 см, а крыши – 40 см. Это позволяет одновременно не выпускать тепло из дома и не впускать холод внутрь него. Кроме того, перегородки в пассивном доме должны обладать высокой способностью аккумулировать тепло. Также производится устранение «мостиков холода» в ограждающих конструкциях. В результате в пассивных домах теплопотери через ограждающие поверхности, как правило, не превышают 15 кВт·ч/м² в год, что практически в 20 раз ниже, чем в обычных зданиях.

Источник

Энергоэффективные строительные системы и технологии

С. Н. Булгаков, академик, первый вице-президент Российской Академии Архитектуры и Строительных наук

Существующая СИТУАЦИЯ

Эксплуатационное энергопотребление существующих жилых и общественных зданий в России примерно в 3 раза превышает аналогичные показатели в технически развитых странах со сходными природно-климатическими характеристиками.

Активная полемика, энергосберегающие программы, теоретические разработки, образцы оборудования, экспериментальные объекты, осуществляемые в последние 10-15 лет, пока не оказали практического влияния на энергоемкость городов и поселений, но создали реалистичные предпосылки для снижения энергопотребления зданий и сооружений.

В связи с тем, что ежегодный прирост жилых и производственных площадей за счет нового строительства в 90-х годах составляет примерно 1% от существующих площадей, основной потенциал энергосбережения содержится в эксплуатационной сфере и может быть реализован посредством реконструкции и санации действующих основных фондов.

Удельные теплопотери в зданиях по экспертным оценкам распределяются следующим образом: до 40% – за счет организованной и неорганизованной инфильтрации нагретого воздуха, до 30% – за счет недостаточного сопротивления теплопередаче ограждающих конструкций, до 30% – за счет нерационального расходования горячей воды и нерегулируемого режима эксплуатации систем отопления.

Основные причины нерационального расходования тепловой энергии:

• несовершенство нерегулируемых систем естественной вентиляции;

• низкое качество и неплотности сопряжения деревянных оконных переплетов и балконных дверей;

• недостатки архитектурно-планировочных и инженерных решений отапливаемых лестничных клеток и лестнично-лифтовых блоков;

• недостаточное теплоизоляционное качество наружных стен, покрытий, потолков подвалов и светопрозрачных ограждений;

• отсутствие приборов учета, контроля и регулирования на системах отопления и горячего водоснабжения;

• чрезвычайно развитая сеть наружных теплотрасс с недостаточной или нарушенной тепловой изоляцией;

• устаревшие, и в большинстве непроизводительные, типы котельного оборудования;

• отсутствие действенного механизма материальной заинтересованности энергопотребителей в ее экономии;

• крайне недостаточное использование нетрадиционных и вторичных источников энергии.

Стратегия энергосбережения в сфере строительства и эксплуатации зданий и сооружений

Системный подход и экономически обоснованная последовательность выполнения комплекса взаимосвязанных и взаимозависимых энергосберегающих мероприятий градостроительного, архитектурно-планировочного, конструктивного, инженерного и эксплуатационного характера.

Программно-целевой метод разработки и реализации системы энергосберегающих мероприятий, ориентированных на получение конечного результата – максимальную экономию невозобновляемых топливных ресурсов при минимальных затратах средств и времени на достижение этой цели.

Первоочередная ориентация научной, проектной и практической деятельности по энергосбережению на наиболее энергоемкую сферу эксплуатации основных фондов, реализация энергосберегающих технологий в которой обеспечивает более 90% потенциального эффекта по энергосбережению за счет модернизации и реконструкции эксплуатируемых зданий, сооружений, инженерных систем, коммуникаций и энергетических объектов.

Переход на энергоэкономичные нормы проектирования и строительства новых зданий и сооружений.

По экспертным оценкам системная реализация энергосберегающих мероприятий позволяет сократить эксплуатационные энергозатраты в жилищном секторе в 2,0–2,5 раза. При этом удельная доля энергосбережения за счет совершенствования градостроительных решений составит 8–10%, архитектурно-планировочных решений – до 15%, конструктивных систем – до 25%, инженерных систем, включая системы вентиляции – до 30%, за счет совершенствования технологии эксплуатации, включая установку приборов учета, контроля и регулирования тепло-, водо- и электропотребления – до 20%.

Научно-практические рекомендации

Энергосберегающие градостроительные решения

Необходимо установить мораторий на расширение границ городов в течение 20–30 лет, развитие их в этот период должно осуществляться за счет более рационального использования территорий, уплотнения застройки до нормативного уровня без освоения новых пригородных территорий и без увеличения протяженности магистральных теплопроводов, других энергосетей и транспортных маршрутов.

Разработать технико-экономические обоснования комплексного использования традиционных централизованных и нетрадиционных систем теплоснабжения, в том числе локальных с применением котельных контейнерного типа, размещаемых на крышах или вблизи отапливаемых зданий.

Разработать программы завершения застройки жилых кварталов и микрорайонов с ликвидацией сквозных ветрообразующих пространств и организацией замкнутых дворовых и внутриквартальных территорий.

Разработать генеральные планы, программы и бизнес-планы вторичной застройки реконструируемых малоэтажных жилых кварталов с утеплением ограждающих конструкций существующих домов в соответствии с новыми теплотехническими нормативами, переходом на автоматизированные индивидуальные тепловые пункты, реконструкцией тепловых сетей, использованием крышных котельных для отопления и горячего водоснабжения на прирост площадей жилья и реализацией комплекса мер по электросбережению с организацией на основе этих кварталов энергоэффективных зон городского хозяйства.

Разработать программы использования подземного пространства (подземная урбанизация) для размещения стоянок автомашин, складских и вспомогательных помещений с использованием естественной теплоты земли или искусственных источников подогрева воздуха до положительной температуры.

Энергосберегающие архитектурно-планировочные решения

Существенное влияние на удельные теплопотери в жилых и общественных зданиях оказывают их объемно-планировочные решения и, в частности, соотношение площади ограждающих конструкций к общей площади зданий, соотношение площади оконных проемов к площади наружных стен, конфигурация зданий в плане, размещение их на рельефе и относительно стран света.

• Переход на проектирование и строительство ширококорпусных жилых домов с сокращением на 20–30% удельной площади ограждающих конструкций на квадратный метр площади жилья (рис. 1).

• Использование ширококорпусных домов при вторичной застройке реконструируемых кварталов, в том числе с возведением ширококорпусных домов вторичной застройки на месте существующих двух-пятиэтажных домов без их сноса, но с одновременной реконструкцией и продлением жизненного цикла до уровня новых зданий.

• Возведение мансардных этажей на существующих зданиях с ограждающими конструкциями повышенной теплозащиты, соответствующей второму этапу норм “Строительная теплотехника”, исключая тем самым сверхнормативные потери тепла через покрытия реконструируемых зданий.

Ширококорпусный 17-этажный дом

Энергосберегающие конструктивные системы

Наиболее рациональными видами энергоэффективных наружных ограждающих конструкций являются многослойные композитные конструкции стен и покрытий с использованием минеральных эффективных материалов.

К наиболее известным и распространенным способам утепления наружных стен относятся: вентилируемые конструкции утепления наружных стен или, как принято их называть, вентилируемые фасады; невентилируемые конструкции утепления наружных стен с использованием минераловатных и полистирольных плит с креплением их непосредственно на стены или на каркас, а также всевозможные сочетания этих вариантов с использованием местных утеплителей.

В Институте строительных конструкций и прочности Берлинского технического университета и в фирме “Этернит” разработаны варианты конструктивных решений утепления наружных стен зданий под общим названием “вентилируемые фасады” (рис. 2).

Конструкции вентилируемого фасада

Устройство многослойной теплоизоляционной системы (МТИС) на защитном слое трехслойной панели наружных стен

При утеплении наружных стен крупнопанельных жилых домов в Германии, Польше, Финляндии и в нашей стране широкое распространение получила многослойная теплоизоляционная система (МТИС), показанная на рис. 3.

В Белоруссии при утеплении крупнопанельных домов используется технология получившая название “термошуба” (рис. 4).

Академическим институтом инвестиционно-строительных технологий РААСН разработан универсальный сухой способ утепления наружных стен зданий и сооружений для всех климатических поясов России. Данный способ утепления может быть использован как для утепления существующих зданий, так и при возведении новых зданий повышенной теплоэкономичности в монолитном, панельном и блочном исполнении.

Термошуба наружных стен жилых зданий

Варианты схемных решений поквартирной системы отопления

При производстве работ практически исключаются мокрые и энергоемкие процессы.

Могут быть использованы утеплители различного вида (засыпные, заливные, плитные, в виде матов), в том числе местного изготовления.

Значительно повышаются архитектурно-эстетические качества наружной отделки фасадов зданий.

Конструктивная система универсального способа утепления наружных стен зданий предусматривает механическое крепление на расчетном расстоянии от стены облицовочных бетонных плиток заводского изготовления и заполнение образуемого пространства утеплителем.

Теплопотери через окна достигают 50% от общих теплопотерь через ограждающие конструкции, поэтому в первую очередь необходимо повышать теплозащитные качества окон. Оконные заполнения из древесины и стеклопластика с тройным остеклением, в виде стеклопакетов, с двойным остеклением и слоем пленки обеспечивают нормативные теплозащитные требования. При реконструкции снижение теплопотерь через окна может быть обеспечено посредством утепления откосов с установкой наличников и путем установки светопрозрачного экрана в межстекольном пространстве оконного блока с раздельными или спаренными переплетами.

Введение экрана позволяет ограничить естественную конвекцию в прослойках и добиться расчетного режима теплопроводности в окнах.

При одновременном учете светотехнических и теплотехнических свойств конструкций, окна с экранами имеют большую энергоэффективность.

Одним из направлений развития энергосбережения в строительстве являются окна с теплоотражающими стеклами. Использование таких окон в жилищном строительстве позволяет снизить потери тепла через них до 40 % энергии. В этом случае окупаемость дополнительных затрат не превышает 1,5 лет.

Традиционными материалами для изготовления оконных переплетов являются древесина, сталь и алюминий. Среди полимерных материалов для применения в конструкциях оконных и дверных блоков наиболее приемлемы стеклонаполненные термореактивные материалы на основе полиэфирных смол –полиэфирные пластики. Эти материалы обладают всеми положительными качествами полимеров, не имея недостатков, присущих термопластам. Например, полиэфирные стеклопластики обладают теплопроводностью дерева, прочностью и долговечностью металла, биологической стойкостью, влаго- и атмосферостойкостью полимера.

Таблица 1
Сравнительные физико-механические и теплофизические свойства
Физико-механические характеристики Стеклопластик Стекло ПВХ Сталь Алюминий Древесина (сосна)
Плотность, т/м 3 1,6-2, 2,2 1,4 7,8 2,7 0,46-0,53
Разрушающее напряжение при сжатии (растяжении), мН/м 2 (мПа) 410-1180 35 41-48 410-480 80-430 40-80
Разрушающее напряжение при изгибе, мН/м 2 (мПа) 690-1240 25-50й 80 400 275 80
Модуль упругости при растяжении, гПа 21-41 50-85 2,8 210 70 11
Модуль упругости при изгибе, гПа 27-41 50-85 2,8 210 70 10
Коэффициент линейного расширения, х10 0 С 5-14 3,2-11 57-75 11-14 22-23 5,4-34
Коэффициент теплопроводности, Вт/м х 0 С 0,3-0,35 0,45 0,15-0,35 46 140-190 0,04-0,1

При реконструкции жилых домов, в значительной части случаев надстраиваются мансардные этажи из легких конструкций и материалов с повышенными теплозащитными свойствами.

Перспективным решением облегченных конструкций каркасов мансардных этажей являются каркасы с использованием металлодеревянных конструкций, сочетающих преимущества дерева и металла как материалов. Совместная работа металлического листа и обжимающих его деревянных досок позволяет существенно снизить вес конструкции и уменьшить расход металла в 4 раза при обеспечении необходимой несущей способности.

Разработаны варианты возведения мансард укрупненными пространственными блоками.

Конструктивные решения объемных блок-комнат для устройства мансарды обеспечивают максимальное снижение веса и необходимую жесткость элементов для их транспортировки и монтажа. Этим требованиям отвечают, в частности, следующие варианты конструктивных решений.

Энергоэффективность мансардных надстроек обеспечивается помимо эффективных ограждающих конструкций также выбором рациональных систем отопления.

Анализ показывает, что при отсутствии резервных мощностей наиболее эффективным решением теплоснабжения мансардных надстроек является использование индивидуальных поквартирных котлов. При этом варианте минимальны как капитальные затраты, так и годовые эксплуатационные расходы.

Энергосберегающие инженерные системы

Как показывает опыт, значительная, а в конкретных условиях – большая доля эффекта энергосбережения может быть получена при модернизации существующих и внедрении новых инженерных систем, энергоисточников, оборудования и контрольно-измерительных приборов по энергосбережению при эксплуатации объектов.

Принципиальными являются три составляющих.

Повышение КПД котельного оборудования; устранение теплопотерь в магистральных и внутриквартальных тепловых сетях; Модернизация систем отопления и горячего водоснабжения зданий, поквартирный учет и регулирование потребления энергоресурсов.

Рекомендуемые мероприятия:

• использование высокопроизводительного котельного оборудования, в том числе локальных котельных контейнерного типа, при размещении которых на крыше зданий исключается необходимость в тепловых сетях;

Переход на автономные, независимые от централизованного теплоснабжения системы горячего водоснабжения с использованием поквартирных газовых или электроводонагревателей и двуставочного тарифа оплаты за электроэнергию.

До 25% от общего возможного эффекта по экономии тепловой энергии можно получить при установке поквартирных приборов учета расходования горячей воды (8–10%) и приборов учета и регулирования систем отопления, способствующих исключению перегрева помещений при межсезонном и временном повышении температуры наружного воздуха и по комнатному регулированию температуры в отопительный период (10–12%).

При реконструкции существующих домов и проектировании новых целесообразно применять принципиально новые системы отопления.

Наибольшее распространение в массовом жилищном строительстве в России получили вертикальные однотрубные системы отопления. В указанных системах невозможно в полной мере реализовать потенциальные возможности энергосбережения.

Организация поквартирного учета расходования теплоносителя в этих системах сложна технически и требует больших материальных затрат.

Существенная экономия тепловой энергии и повышение уровня теплового комфорта в отапливаемых помещениях достигается при применении горизонтальных систем отопления с поквартирным распределением теплоносителя.

Горизонтальные системы отопления могут выполняться в двух вариантах:

• с кольцевой разводкой трубопроводов по периметру наружных стен (рис.5 а);

• с лучевой разводкой и подачей теплоносителя к каждому прибору от специального коллектора по гибким трубопроводам, проложенным в полу по кратчайшему пути (рис. 5 б).

Экономия тепловой энергии при эксплуатации рассматриваемых систем составляет 20–25% за отопительный сезон по сравнению с существующими вертикальными отднотрубными системами отопления.

Ориентировочные расчеты показывают, что при совокупной реализации мероприятий по модернизации инженерных систем, расходы тепла в жилых и общественных зданиях на отопление и нагрев приточного или инфильтрирующего воздуха возможно сократить на 30–40%. При этом единовременные капитальные затраты будут значительно (от 2 до 10 раз) ниже, чем затраты на увеличение термического сопротивления стен.

ЗАКЛЮЧЕНИЕ

Очевидно в ближайшие два-три десятилетия, на стыке периодов исчерпания традиционных и недостаточного развития новых энергоисточников, возникнет дефицит энергоресурсов и резкое их удорожание, и задача экономии энергоресурсов станет приоритетной.

В связи с этим в сфере создания, модернизации и эксплуатации строительной продукции доминирующим фактором станет обеспечение минимальных теплопотерь в зданиях за счет разработки и использования энергоэкономичных объемно-планировочных и конструктивных решений, новых с высоким коэффициентом сопротивления теплопередаче строительных материалов и изделий, энергоэффективного оборудования и регулируемых, в том числе нетрадиционных, систем энергообеспечения. Приоритетное направление развития строительных материалов, изделий и оборудования будет принадлежать энергосберегающим видам.

Исходя из изложенного, с достаточной степенью достоверности можно полагать, что развитие конструктивных систем, строительных материалов, изделий и оборудования в начале XXI века будет происходить по традиционным и новым направлениям, удовлетворяющим требованиям энергосбережения, экологической безопасности, технологичности, экономичности, малой трудоемкости возведения, адаптивности к условиям реконструкции и модернизации жилых и производственных зданий.

Источник

Строим вместе с сайтом Rukami.top
Не пропустите:
  • Энергосберегающие материалы для строительства дома
  • Энергосберегающие конструкции в строительстве
  • Энергосберегающая технология малоэтажного строительства
  • Энергосберегательные технологии в строительстве
  • Энергомонтаж реконструкция строительство сетевых объектов ооо